

PROTOCOLO DE ANESTESIA MULTIMODAL EM QUEIXADA (Tayassu pecari) – RELATO DE CASO

ALVES, Daniele Cristina.¹
GOMES, Ana Elisa Figueiredo.²
TURMINA, Daiane Cristine Banaszeski.³
CARVALHO, Giovane Franchesco de.⁴
RIBEIRO, Rodrigo Neca ⁵

RESUMO

Um queixada, pertencente ao plantel do Zoológico de Cascavel – PR, que apresentou claudicação e edema em membro torácico esquerdo após briga em recinto, foi diagnosticado fratura completa de rádio esquerdo e precisou ser submetido a um procedimento cirúrgico de osteossíntese. O protocolo anestésico se iniciou com a contenção química do animal no recinto, após chegar ao Hospital Veterinário do Centro Universitário FAG o paciente foi induzido a anestesia. A manutenção da anestesia foi através da técnica intravenosa total (AIVT) e para a analgesia foi realizado bloqueio do plexo braquial associado a infusão continua de fármacos com propriedades analgésicas.

PALAVRAS-CHAVE: Contenção, Química, Locorregional, Plexo, Intravenosa.

1. INTRODUÇÃO

O queixada (*Tayassu pecari*), popularmente conhecido como porco-do-mato, é uma espécie nativa da fauna brasileira. A anestesia na rotina e manejo de animais selvagens é frequente, tanto para procedimentos diagnósticos, como terapêuticos. É importante para reduzir o estresse gerado pela contenção química, facilitar o manejo e evitar acidentes (CUBAS, SILVA & CATÃO-DIAS, 2014; GRIMM, *et al.*, 2015).

Considerando que não há um fármaco que isolado consiga atender a todos os requisitos, fazse necessário uma associação farmacológica inteligente (CUBAS, SILVA & CATÃO-DIAS, 2014), visando reduzir as doses, aumentar a potência e diminuir os efeitos colaterais (SPINOSA, GÓRNIAK & BERNARDI, 2017).

O intuito do presente trabalho é discorrer sobre um protocolo anestésico empregado para um procedimento de osteossíntese de rádio em um queixada, exemplar do Parque Municipal Danilo

¹Discente Daniele Cristina Alves, acadêmica do curso de Medicina Veterinária do Centro Universitário FAG. Cascavel – PR. E-mail: daniele_alves75@outlook.com

²Discente Ana Elisa Figueiredo Gomes, acadêmica do curso de Medicina Veterinária do Centro Universitário FAG. Cascavel – PR. E-mail: anaeliisaf@gmail.com

³Discente Daiane Cristine Banaszeski Turmina, acadêmica do curso de Medicina Veterinária do Centro Universitário FAG. Cascavel – PR. E-mail: Daiane.banaszeski@gmail.com

⁴Docente Giovane Franchesco de Carvalho, professor do curso de Medicina Veterinária do Centro Universitário FAG. Cascavel – PR. E-mail: franchescogiovane@gmail.com

⁵Docente Rodrigo Neca Ribeiro, professor do curso de Medicina Veterinária do Centro Universitário FAG. Cascavel – PR. E-mail: rodrigonribeiro@hotmail.com

Galafassi – Zoológico Municipal de Cascavel – PR, que foi atendido no Hospital Veterinário do Centro Universitário da Fundação Assis Gurgacz, abordando a técnica, fármacos utilizados e monitoramento anestésico.

2. FUNDAMENTAÇÃO TEÓRICA

2.1. CONTENÇÃO QUÍMICA

Bertozzo *et al.*, (2008) descreveu a contenção química ou contenção farmacológica como uma modificação favorável de comportamento, sedação, analgesia e miorrelaxamento induzidos por fármacos. Em animais selvagens pode ser aplicada para manejos como captura, transporte e tratamento.

2. 2. ANESTESIA MULTIMODAL

O plano anestésico para uma anestesia geral cirúrgica deve proporcionar ao paciente: inconsciência, amnésia, relaxamento muscular e analgesia, motivo pelo qual é importante a realização de protocolo de anestesia multimodal. A anestesia multimodal consiste em uma anestesia balanceada, com associação de drogas com propriedades analgésicas com o intuito de bloquear a dor através de diferentes mecanismos farmacodinâmicos (GRIMM et al., 2017).

2. 3. ANESTESIA REGIONAL

A anestesia regional é obtida através da deposição de um anestésico local adjacente a um nervo ou plexo, com isso ocorre a dessensibilização da área devido a interrupção da condução nervosa. Tratando-se do bloqueio do plexo braquial, a anestesia do mesmo ocorre desde o membro torácico distal até a articulação escapuloumeral (RODRIGES *et al.*, 2016).

2. 4. ANESTESIA INTRAVENOSA TOTAL (AIVT)

A AIVT consiste em uma técnica anestésica onde são realizadas infusões de um ou mais fármacos pela via intravenosa para se obter um plano anestésico adequado. É uma técnica vantajosa quando comparada a anestesia inalatória, devido a sua maior estabilidade cardiovascular (GRIMM *et al.*, 2017).

3. METODOLOGIA

O estudo refere-se ao caso de um suíno, que após briga em recinto precisou ser anestesiado para realização de osteossíntese de rádio. O artigo consiste em uma pesquisa de campo, do tipo relato de caso, com coleta de dados em prontuários médico-veterinário referente a um procedimento em um queixada, pertencente ao plantel do Parque Municipal Danilo Galafassi – Zoológico Municipal de Cascavel que recebeu atendimento no Hospital Veterinário do Centro Universitário Fundação Assis Gurgacz em julho de 2020.

4. RELATO E ANÁLISES DO CASO

Um queixada macho de 45 kg, pertencente ao plantel do Zoológico de Cascavel – PR, apresentou claudicação e edema em membro torácico esquerdo após briga em recinto. O animal foi sedado e levado a clínica veterinária DIMEVET para a realização de uma radiográfia, com o exame se obteve o diagnóstico de fratura completa de rádio.

Após o retorno ao zoológico, o animal recebeu 0,5 mg/kg de morfina (Dimorf®), 40 mg/kg de dipirona (Febrax®) e 0,2 mg/kg de meloxicam (Maxicam®). Segundo Kukanich & Wiese (2017) a morfina pode ser empregada para o tratamento de dor leve a intensa em mamíferos, e doses crescentes resultam em efeitos analgésicos crescentes.

A dipirona é um analgésico não opióide, sua ação ocorre através da inibição das isoensimas COX-1 e 2, inibição da síntese de PGE₂ central e periférica, bem como, ativação dos receptores opióides e canabinóide (NIKOLOVA et al., 2012; TEIXEIRA *et al.*, 2017. O meloxicam é um antiinflamatório não estoroidal (AINES), os AINES são utilizados para prevenir inflamações e também para o alivio da dor em períodos curtos e longos de tempos (ALENCAR *et al.*, 2003).

O suíno passou por um período de jejum alimentar de 12 horas e jejum hídrico de 2 horas, então com o auxílio de dardo e zarabatana foi administrado a contenção química, que consistiu em

15 mcg/kg de dexmedetomidina (Dexdomitor®), 5 mg/kg de cetamina (Cetamin®) e 0,5 mg/kg de morfina (Dimorf®). Após o período de latência o paciente foi transportado para o Hospital Veterinário do Centro Universitário Fundação Assis Gugacz para a realização do procedimeto cirúrgico osteossíntese de rádio.

A dexmetetomidina é um agonista α₂ adrenérgico com maior seletividade quando comparado com os outros representantes dessa classe, apresenta importante ação sedativa e analgésica (VILELA *et al.*, 2003). Quando associada a opioides permite reduzir as doses dos agentes indutores, minimizar os efeitos colaterais e prevenir a rigidez muscular (BALDO *et al.*, 2003; MONTEIRO *et al.*, 2008).

A cetamina pertence à classe das ciclo-hexaminas, em doses baixas e associado agonistas dos receptores α₂ adrenérgicos apresenta efeitos aditivos ou sinérgicos, resultando em uma indução e recuperação mais suave, além de minimizar a rigidez muscular (CAULKETT & ARNEMO, 2017). Em associações com opióides proporciona uma analgesia mais duradoura (OLIVEIRA *et al.* 2004).

Os efeitos da morfina são principalmente como agonistas opióides µ completo. No entanto, doses altas podem resultar em ação agonista κ (KUKANICH & WIESE, 2017). A associação de agentes opióides a fármacos com propriedade sedativa promove um maior grau de sedação e analgesia, denominada de neuroleptoanalgesia (BENSEÑOR & CICARELLI, 2003).

A analgesia preemptiva consiste na administração de medicamentos para tratar a dor antes do estimulo doloroso. É utilizada no pré-operatório com o intuito de prevenir ou minimizar a dor no pós-operatório. Também pode ser empregada para evitar a sensibilização central, que resulta em dor crônica (GARCIA *et al.*, 2001).

Ao chegar ao Hospital Veterinário FAG, o paciente foi levado a sala de ultrassonografia, foi posicionado a mesa em decúbito lateral, realizado acesso venoso em veia cefálica direita e indução anestésica com 2 mg/kg de propofol (<u>Propovan®</u>) diluido e infundido em bolus de 2 minutos. A terapia suporte consistiu em ceftriaxona, meloxicam e dipirona nas doses de 30 mg/kg, 0,2 mg/kg e 40 mg/kg respectivamente. Em seguida foi efetuado tricotomia ampla do sítio cirúrgico e antissepsia do local a ser bloqueado.

Massone (2008) descreveu o bloqueio do plexo braquial como uma anestesia pernineural onde é realizada a introdução de uma agulha acima da articulação escapuloumeral, na altura da articulação costocondral da primeira costela em direção paralela a coluna vertebral. Segundo ele as doses de 2 a 5 ml de lidocaína a 1% ou bupivacaína a 0,25%.

Segundo Campoy *et al.* (2016) o transdutor deve ser posicionado em uma região axilar na fossa entre o manúbrio do esterno e o tubérculo supraglenóide da escapula. O sucesso do

procedimento pode ser avaliado mediante a posição característica do membro torácico (MASSONE, 2008).

O bloqueio do plexo braquial guiado por ultrassom se iniciou com o posicionamento do transdutor na região axilar, no momento em que foi identificado a porção de inserção do anestésico local, foi introduzido a agulha e progredido em sentido cranial a caudal, então foi feito a deposição de 0,5 mg/kg de bupivacanína (*Neocaína*®) (Figura 1).

A bupivacaína é um anéstesico local, esse fármaco atua promovendo o bloqueio sensorial e motor da geração e propagação de impulsos nervosos de forma reversível. Quando comparada a lidocaína, a bupivacaína é mais potente e apresenta maior tempo de ação (GARCIA, 2017).

Figura 1 – Ponto de inserção do transdutor e deposição do anestésico local.

Fonte: Arquivo pessoal (2020).

A intubação orotraqueal foi realizada com o auxílio de um laringoscópio que possibilitou abaixar a epiglote e observar as cartilagens aritenóides, onde foi feito a introdução do tubo endotraqueal na glote. Em seguida o animal foi levado ao centro cirúrico e posicionado a mesa, onde foi colocado em um sistema de ventilação coaxial Mapleson do tipo D.

A manutenção anestésica foi através da anestesia total intravenosa (AIVT) com infusão continua de 0,2 mg/kg/minuto de propofol (Figura 2). A AIVT consiste na infusão de um ou mais fármacos pela via intravenosa para se obter um estado anestésico adequado (TRANQUILLI & GRIMM, 2017).

O médico veterinário anestesiologista optou pela utilização da AIVT, devido a predisposição dos suínos para desenvolver hipertermia maligna (HM). De acordo com Correia *et al.* (2012) a HM pode ser desencadeada pela utilização de agentes inalatórios, relaxantes musculares despolarizantes e exercício físico em excesso em locais quentes. A HM é resultado do acúmulo de cálcio (Ca²⁺) no



mioplasma, consequentemente ocorre uma aceleração metabólica e da atividade contrátil do músculo esquelético, podendo provocar quadros de hipoxemia, acidose metabólica, rabdomiólise, hipertermia e óbito.

Para analgesia, além do bloqueio do plexo braquial, optou-se pela infusão continua de uma solução contendo 20 mcg/kg/hora de remifentanil (Remifas®) e 1 mg/kg/hora de dextrocetamina (Ketamin®). A infusão contínua intravenosa possibilita a analgesia e anestesia em consequência a depressão do sistema nervoso central (Moreira *et al.*, 2011).

A remifentanila é um derivado da fentanila, com uma meia vida de eliminação muito curta (cerca de 6 minutos), devido a sua metabolização ser através de esterases plásmaticas. Com isso a sua utilização em protocolos analgésicos deve ser através da infusão contínua. A dextrocetamina é amplamente empregado como adjuvante em protocolos anestésicos e a resposta analgésica ocorre em função da ativação dos receptores alfa-adrenérgicos (GEVEHR *et al.*, 2018).

Fonte: Arquivo pessoal (2020).

O primeiro objetivo do monitoramento anestésico é a avaliação do nível de profundidade, que consiste em um conjunto de sinais e parâmetros fisiológicos utilizados em fármacos hipnóticos para a identificação do plano anestésico. Com base na escala de Guedel foram observados o posicionamento do globo ocular e os reflexos palpebral e corneal.

Outros parâmetros de monitoramento foram a coloração das mucosas, pulso e tempo de preenchimento capilar (TPC). Com um monitor multiparamétrico foram aferidos a temperatura retal (T°C), pressão arterial pelo método oscilométrico, traçado eletrocardiográfico (eletrocardiografia – ECG), frequência cardíaca (FC) e saturação de oxigênio (SpO2%). Os parâmetros estavam sendo

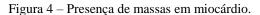
mensurados e anotados a cada 5 minutos durante todo o procedimento anestésico, conforme descrito em tabela 1.

Tabela 1 - Valores dos parâmetros vitais mensurados no trans anestésico.

Tempo	F.C.	SpO2	P.A.S.	P.A.D.	P.A.M.	T°C
5 min.	124	94	106	56	70	37,1
10 min.	119	95	120	59	72	37,2
15 min.	127	95	125	47	80	37,3
20 min.	114	94	109	51	60	37,3
25 min.	129	95	109	68	80	37,3
30 min.	144	95	129	77	90	37,3
35 min.	119	96	140	58	99	37,4
40 min.	115	96	140	58	115	37,7
45 min.	126	98	140	161	93	37,8
50 min.	147	96	154	76	119	37.8
55 min.	129	96	150	85	114	37,9
60 min.	134	95	183	99	145	38
65 min.	136	95	185	109	150	38
70 min.	167	96	196	108	152	38,1
75 min.	143	97	195	115	140	38,2
80 min.	134	95	204	116	164	38,2
85 min.	145	97	191	113	131	38,3
90 min.	162	98	198	122	137	38,4
95 min.	155	96	202	124	143	38,5
100 min.	120	96	214	125	147	38,5
105 min.	120	96	197	119	138	38,5
110 min.	151	97	177	109	128	38,8
115 min.	156	96	175	110	131	38,9
120 min.	143	97	196	122	152	39
Média	134	96	176	108,5	129,5	38

Fonte: Arquivo pessoal (2020).

No trans anestésico o suíno apresentou hipertensão e hipertermia, sem mais alterações. Na avaliação de globo ocular e reflexo palpebral, o paciente apresentou-se estável e dentro da normalidade, com o globo ocular semirrotacionado (Figura 3), com ausência de reflexo palpebral, interdigital e laringotraqueal, de acordo com o plano anestésico 2 do estágio 3 da escala de Guedel (MASSONE, 2008).


Figura – 3 Paciente no segundo plano do estágio III da escala de Guedel.

Fonte: Arquivo pessoal (2020).

Ao término do ato cirúrgico, que teve 2 horas de duração, o paciente foi levado a sala de radiográfia para fazer o controle pós operatório, antes da realização do exame o paciente apresentou uma parada cardiorrespiratória, o médico veterinário começou a fazer massagem cardíaca imediatamente, enquanto era administrado adrenalina. No entanto não houve sucesso para a reanimação.

O animal foi levado ao Zoológico onde foi realizado a necrópsia, ao exame macroscópico foram observados alterações como, acúmulo de gás em trato digestório, fígado edemaciado e com pontos hemorrágicos, pulmões também apresentavam focos hemorragicos e presença de duas massas no miocáridio (Figura 4), o que foi a provável causa do óbito. Porém não foi possível o diagnóstico definitivo, visto que não foi realizado o exame histopatológico.

Fonte: Arquivo pessoal (2020).

5. CONSIDERAÇÕES FINAIS

O protocolo anestésico para o procedimento de osteossíntese de rádio, com a associação do bloqueio do plexo braquial ecoguiado e a infusão contínua de dextrocetamina e remifental foi efetiva durante o trans operatório para o controle analgésico, tendo como base os parâmetros avaliados.

Durante todo o trans cirúrgico o paciente foi mantido no segundo plano do estágio III da escala de Guedel, plano ideal para procedimentos cirúrgicos, e as únicas alterações foram a hipertensão e a hipertermia. Contudo era um animal selvagem, que não passou por exames prévios e na inspeção visual não apresentava alterações ou mudanças comportamentais, apenas no membro fraturado.

REFERÊNCIAS

BRODBELT, D. C.; FLAHERTY, D.; PETTIFER, G. R. Risco **Anestésico e Consentimento Informado**. In: Lumb & Jones | Anestesiologia e Analgesia em Veterinária. 5. ed. (revisão técnica). Rio de Janeiro, Roca, 2017. Cap 2, pg 10 – 21.

CAMPOY, L.; READ, M.; PERALTA, S. **Técnicas de Anestesia Local em Cães e Gatos**. In: Lumb & Jones | Anestesiologia e Analgesia em Veterinária. 5. ed. (revisão técnica). Rio de Janeiro, Roca, 2017. Cap 45, pg 821 – 849.

CAULKETT, N. A.; ARNEMO, J. M. Anestesia e Analgesia Comparada de Animais Selvagens de Zoológicos e de Vida Livre. In: Lumb & Jones | Anestesiologia e Analgesia em Veterinária. 5. ed. (revisão técnica). Rio de Janeiro, Roca, 2017. Cap 40, pg 759 – 771.

CORREIA, A. C. C.; SILVA, P. C. B; SILVA, B. A. Hipertermia Maligna: Aspectos Moleculares e Clínicos. **Revista Brasileira de Anestesiologia**, 2012; 62: 6: 820-837.

CUBAS, Z. S.; SILVA, J. C. R.; CATÃO-DIAS, J. L. **Tratado de animais selvagens**: Medicina Veterinária. Cap. 97. 2.ed. São Paulo: Editora GEN/Roca, 2014.

KUKANICH, B.; WIESE, A. J. **OPIOIDES**. In: Lumb & Jones | Anestesiologia e Analgesia em Veterinária. 5. ed. (revisão técnica). Rio de Janeiro, Roca, 2017. CAP. 11, PG 199 – 219

TRANQUILLI, W. J.; GRIMM, K. A. Introdução à Anestesia e à Analgesia / Uso, Definições, História, Conceitos, Classificação e Considerações. In: Lumb & Jones | Anestesiologia e Analgesia em Veterinária. 5. ed. (revisão técnica). Rio de Janeiro, Roca, 2017. Cap 1, pg 3 – 9.

ALENCAR, M. M. A. et al. Margem de segurança do meloxicam em cães: efeitos deletérios nas células sanguíneas e trato gastrointestinal. **Ciencia Rural**, Vol. 33, N°, Rio Grande do Sul, p.525-532, Santa Maria, 2003.

BALDO, C. F.; NUNES, N. **Dexmedetomidina, uma nova opção na anestesiologia veterinária**. Semina: Ciências Agrárias, Londrina, v. 24, n. 1, p. 155-162, jan./jun. 2003.

BERTOZZO, D.; FREITAS, R. E.; REIS, F.; REIS, R.; SANTOS, D. S.; SOUZA, W. A.; PEREIRA, R. E. P. CONTENÇÃO QUÍMICA EM ANIMAIS SILVESTRES REVISÃO DE LITERATURA. **REVISTA CIENTÍFICA ELETÔNICA DE MEDICINA VETERINÁRIA**. Ano VI – Número 11 – Julho de 2008.

BENSEÑOR, F. E. M.; CICARELLI, D. D. Sedação e Analgesia em Terapia Intensiva. **Revista Brasileira de Anestesiologia**. Vol. 53, N° 5 p.680-693, São Paulo, São Paulo, 2003.

GARCIA, J. B. S.; ISSY, A. M.; SAKATA, R. K. Analgesia preemptiva. **Revista Brasileira de Anestesiologia**. Vol. 51, N° 5 p.448-463, Campinas, São Paulo, 2001.

GEVEHR, A. C. L. S.; RIBEIRO, R. N. Anestesia dissociativa e anestesia balanceada em gatas (Felis catus) submetidas a ovariohisterectomia. **PUBVET** v.12, n.10, a190, p.1-8, Out., 2018.

MASSONE, F. **Anestesiologia Veterinária: farmacologia e técnicas**. 5.ed. (ampl. e atualizada). Rio de Janeiro, p. 177-201, Guanabara, 2008.

MONTEIRO, E. R.; PICOLI, F. M.; QUEIROZ, M. G. O.; CAMPAGNOL, D.; QUITZAN, J. G. Efeitos Sedativo e Cardiorrespiratório da Administração da Metadona, Isoladamente ou em Associação á Acepromazina ou Xilazina, em Gatos. **Braz. J. vet. Res. anim. Sci.**, São Paulo, v. 45, n. 4, p. 289-297, 2008.

OLIVEIRA, C. M. B. et al. Cetamina e Analgesia Preemptiva. **Revista Brasileira de Anestesiologia** Vol. 54, N° 5, São Paulo: São Paulo, 2004.

RODRIGUES, I. V.; TRAVAGIN, D. R. P.; XAVIER, N. S. P.; CAMPOS, W. N. S.; RODRIGUES, B. M. **Bloqueio do Plexo Braquial em Cão Submetido à Amputação de Membro Torácico**. Anais do VII do CONCCEPAR (Congresso Científico da Região Centro-Ocidental do Paraná), 2016.

SPINOSA, H. S.; GÓRNIAK, S. L.; BERNARDI, M. M. Farmacologia Aplicada à Medicina Veterinária.Cap. 17. 6.ed. Rio de Janeiro: Guanabara Koogan, 2017.

TEIXEIRA, L. G.; FRANCO, N.; DEGREGORI, E. B.; ROSA, M. P. da.; ARBOIT, J.; BERTOLIN, C.; CONTESINI, E. A. Uso de dipirona como analgésico no pós-operatório de cães. **Veterinária em Foco**, Canoas. v.15 n.1 p.13-20 jul./dez. 2017.

VILELA, N. R.; NASCIMENTO JR, P.; TSA. Uso de dexmedetomidina em anestesiologia. **Revista Brasileira de Anestesiologia** 97 Vol. 53, Nº 1, janeiro - fevereiro, 2003. 53: 1: 97 - 113.