

AUTORES:
FERNANDO HENRIQUE MADUREIRA
MATHEUS MOLLER SKOTEKI
PAULO HENRIQUE ZANCO
RENAN ZEFERINO SILVESTRO

ENGENHARIA

INTRODUÇÃO

A segurança no automobilismo exige materiais que unam resistência, leveza e conforto. Este trabalho analisa o uso de grafeno, policarbonato e ABS na fabricação de capacetes, considerando suas propriedades e critérios de seleção com base nas cartas de Ashby.

Critérios de Seleção de Materiais:

Baixa Densidade: Garante leveza, reduzindo a fadiga e os efeitos da inércia em impactos. Alta Resistência ao Impacto (Tenacidade): Essencial para absorver e dissipar energia, evitando fraturas e protegendo o piloto. Alta Resistência Mecânica: Elevada resistência à tração e boa rigidez, suportando deformações sob cargas intensas. Conforto Térmico: Boa condutividade térmica, ajudando na dissipação de calor e aumentando o conforto durante o uso.

Processabilidade e Custo: Materiais devem ser viáveis economicamente e de fácil fabricação, além de atenderem aos requisitos técnicos.

Imagem 1 – Capacetes de grafeno, policarbonato e ABS

Análise com Cartas de Ashby:

Densidade vs Tenacidade: O grafeno destaca-se por ter altíssima tenacidade com densidade extremamente baixa, superando materiais convencionais como ABS e policarbonato.

Módulo de Elasticidade vs Resistência à Tração: O grafeno apresenta módulo de elasticidade e resistência à tração muito superiores, oferecendo rigidez sem perder ductilidade.

Tabela 1 – Comparação entre materiais

Propriedade	Grafeno	Policarbona to (PC)	ABS
Densidade (g/cm³)	0,0022	1,20	1,04
	>1000 (em		
Tenacidade (kJ/m²)	compósitos)	60–80	20–40
Resistência à	~130.000 (material		
Tração (MPa)	puro)	60–70	40-50
Módulo de	~1.000 (material		2,0-
Elasticidade (GPa)	puro)	2,0–2,4	2,5
Condutividade			
Térmica (W/m·K)	~5.000	0,19	0,18
	Muito Alto (uso em		
Custo Relativo	compósitos)	Médio	Baixo
	Complexa		Excel
Processabilidade	(nanotecnologia)	Boa	ente

Imagem 2 – Comparação materiais capacetes em corte.

CONSIDERAÇÕES FINAIS

A análise demonstra que a utilização do grafeno como material de reforço em matrizes de polímeros como o policarbonato e o ABS proporciona uma melhoria significativa nas propriedades mecânicas dos capacetes, oferecendo maior resistência ao impacto e leveza. A combinação desses materiais gera capacetes mais seguros e confortáveis, alinhados às exigências do automobilismo moderno.

REFERÊNCIAS

BAKIR, M.; DEMIREL, O.; AKPINAR, S. Desenvolvimento de compósitos à base de grafeno para aplicações em capacetes de segurança. Composites Part B: Engineering, v. 219, 2021. Disponível em: https://doi.org/10.1016/j.compositesb.2021.108983. Acesso em: 24 maio 2025.

KROTOFALSKI, K.; KIM, K. S.; YOO, B. M. Nanocompósitos de polímeros reforçados com grafeno para aplicações de resistência a impacto: uma revisão. Materials Today Communications, v. 24, 2020. Disponível em: https://doi.org/10.1016/j.mtcomm.2020.101095. Acesso em: 24 maio 2025.