José Wammes Gilmar José Camargo

# TAXAS, JUROS COMPOSTOS E AMORTIZAÇÃO DE CAPITAL:

Uma abordagem prática





# JOSÉ WAMMES GILMAR JOSÉ CAMARGO

# TAXAS, JUROS COMPOSTOS E AMORTIZAÇÃO DE CAPITAL:

Uma abordagem prática



### © José Wammes e Gilmar José Camargo

Coordenação Editorial: Osmar Antonio Conte

Ficha Catalográfica: Mariana Senhorini Caron - CRB9-1462

Wammes, José; Camargo, Gilmar José.

M172t Taxas, juros compostos e amortização de capital: uma abordagem prática / Gilmar José Camargo, José Wammes – Toledo: Fasul, 2014.

82 p.

1. Capital (Economia). 2. Valor (Economia). 3. Juros. 4. Amortização. I. Título

CDD 21.ed. 332.041

ISBN 978-85-89042-24-6

#### Direitos desta edição reservados à:

#### **Fasul Ensino Superior Ltda**

Av. Ministro Cirne Lima, 2565 CEP 85903-590 – Toledo – Paraná Tel. (45) 3277-4000 - e-mail: fasul@fasul.edu.br

Depósito Legal na Biblioteca Nacional Divulgação Eletrônica - Brasil - 2014

# **SUMÁRIO**

| APR | RESENTAÇÃO                                                    | 01 |
|-----|---------------------------------------------------------------|----|
| 1   | TAXAS DE JUROS EQUIVALENTES                                   | 02 |
| 1.1 | Equações algébricas – fórmulas                                | 03 |
| 1.2 | Utilização de calculadora financeira                          | 04 |
| 1.3 | Equivalência de taxas de juros entre si                       | 04 |
| 1.4 | Entendendo equivalência de taxas de juros                     | 05 |
| 1.5 | Apresentação de modelos para cálculo                          | 06 |
| 1.6 | Modelos para prática e fixação                                | 16 |
| 2   | JUROS COMPOSTOS                                               | 18 |
| 2.1 | Equações algébricas – fórmulas                                | 18 |
| 2.2 | Interpretação gráfica                                         | 18 |
| 2.3 | Apresentação de modelos para cálculo                          | 19 |
| 2.4 | Modelos para prática e fixação                                | 21 |
| 2.5 | Montante                                                      | 25 |
| 2.6 | Equações algébricas – fórmulas                                | 26 |
| 2.7 | Interpretação gráfica                                         | 26 |
| 2.8 | Apresentação de modelo para cálculo                           | 26 |
| 2.9 | Modelos para prática e fixação                                | 29 |
| 3   | AMORTIZAÇÃO DE CAPITAL                                        | 37 |
| 3.1 | Da premissa dos métodos                                       | 37 |
| 3.2 | Sistema de amortização de constante – SAC – Método Hamburguês | 37 |
| 3.3 | Representação gráfica                                         | 38 |
| 3.4 | Fórmulas de cálculo                                           | 38 |
| 3.5 | Modelo básico para cálculo                                    | 38 |
| 3.6 | Modelos para prática e fixação                                | 40 |
| 3 7 | Com carância                                                  | 44 |

| 3.8 | Modelos para prática e fixação                | 46 |
|-----|-----------------------------------------------|----|
| 4   | SISTEMA FRANCÊS DE AMORTIZAÇÃO – TABELA PRICE | 50 |
| 4.1 | Representação gráfica                         | 50 |
| 4.2 | Fórmulas de cálculo                           | 50 |
| 4.3 | Modelo básico para cálculo                    | 50 |
| 4.4 | Modelos para prática e fixação                | 53 |
| 4.5 | Com carência                                  | 56 |
| 4.6 | Modelos para prática e fixação                | 58 |
| 4.7 | Comparativo entre os sistemas SAC e PRICE     | 62 |
| APÊ | NDICES: TAXAS DE JUROS EQUIVALENTES           | 64 |

#### **APRESENTAÇÃO**

#### Uma breve conversa com o leitor

Os conteúdos a que os autores se propõem a discorrer na presente obra foram selecionados entre os de maior grau de dificuldade de aprendizado por parte dos acadêmicos, na disciplina de matemática financeira: Taxas equivalentes de juros, juros compostos e amortização de capital.

A constatação deve-se a presença dos autores, professores em instituição de ensino superior, em sala de aula. A cada período que se inicia, sempre o mesmo drama. Até que se solidifique o processo de aprendizagem dos três conceitos, o semestre já findou e, muitos outros assuntos de interesse para a formação do acadêmico, ficam pelo caminho. E, diga-se, conceitos fundamentais para a vida acadêmica e profissional futura.

Diante dessa realidade tão presente e da carência de conhecimentos anteriores ao período de aulas presenciais, querem, os autores, contribuir com uma obra de cunho prático, que possa ser utilizada e consultada por acadêmicos das áreas de ciências econômicas, contábeis, administração e tecnólogos em geral.

É pretensão dos autores, também, atingir graduados em plena atividade profissional ou cursando pós graduação. A obra visa contribuir com estudantes que se preparam para os exames de suficiência em seus conselhos de classe e de candidatos em concursos públicos.

A respeito dos conceitos que serão focados, inúmeras obras estão à disposição dos interessados. Apenas, que esta, quer dar um foco mais prático.

Quer-se atender a essa demanda dos estudantes ofertando o que buscam para sua formação acadêmica. Qual seja, modelos e exercícios focando no enunciado, na interpretação gráfica, na resolução algébrica e na utilização de calculadora financeira, sem abrir mão da parte teórica, tão importante e necessária para o domínio dos conceitos e resolução dos modelos propostos.

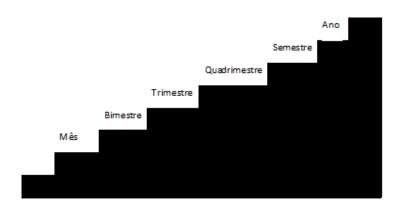
Os assuntos são por demais interessantes e atuais. Sua aplicabilidade é imediata, quer no dia a dia das empresas ou das pessoas e famílias.

Toledo, Paraná, inverno de 2014.

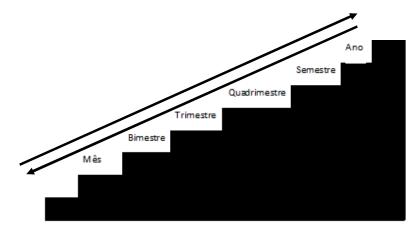
Os autores


#### 1. TAXAS DE JUROS EQUIVALENTES

Para o entendimento e cálculos envolvendo juros compostos, amortização de capital, valor do dinheiro no tempo e análise de retorno de investimentos é fundamental o domínio conceitual e prático do cálculo de equivalência de taxas de juros.


Pode-se afirmar que o domínio do assunto é a espinha dorsal de todo o sistema de juros compostos. Assim, fica evidente a necessidade do aprendizado e domínio das diversas técnicas de cálculo.

Para o desenvolvimento da aprendizagem, vamos introduzir a figura de uma escada. Nela, há degraus. Nestes, podemos subir e descer, desde que não estejamos nas extremidades, quando, então, ficamos limitados a uma única direção.


Observe a figura de uma escada, abaixo, com os seus degraus.



Admita, agora, que cada degrau tenha um nome, conforme abaixo:



Estando em um degrau qualquer podemos subir ou descer a escada.



Valendo-se de um princípio de física, para subirmos a escada necessitamos de força, de potência. Logo, associando isto, sempre que quisermos subir um ou mais degraus, iremos utilizar o conceito de potência. E, ao descermos, utilizamos o seu inverso, a radiciação.

Para tanto necessitamos, antes, conhecer as unidades múltiplas e submúltiplas do tempo - prazo. O conhecimento destes múltiplos e submúltiplos nos facilitará os cálculos de potenciação e radiciação, visto que necessitamos indicar o expoente ou o índice da raiz da operação algébrica. Acompanhe o quadro a seguir:

Quadro 1: Múltiplos e submúltiplos de prazos - tempo.

|              | ANO  | SEMESTRE | QUADRIMESTRE | TRIMESTRE | BIMESTRE | MÊS |
|--------------|------|----------|--------------|-----------|----------|-----|
| ANO          | 1    | 2        | 3            | 4         | 6        | 12  |
| SEMESTRE     | 1/2  | 1        | 11/2         | 2         | 3        | 6   |
| QUADRIMESTRE | 1/3  | 2/3      | 1            | 1 1/3     | 2        | 4   |
| TRIMESTRE    | 1/4  | 1/2      | 34           | 1         | 11/4     | 3   |
| BIMESTRE     | 1/6  | 1/3      | 1/2          | 2/3       | 1        | 2   |
| MÊS          | 1/12 | 1/6      | 14           | 1/3       | 1/2      | 1   |

A leitura se dá em linha, da esquerda para a direita.

#### 1.1 Equações algébricas - fórmulas

Para a resolução de qualquer situação de taxa de juro equivalente, podemos nos valer de três fórmulas:

| a) | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 |
|----|----------------------------------------------------|
| b) | ieq = [(1 + i) <sup>n</sup> -1]100                 |
| c) | ieq = [( <sup>N</sup> V1 + i ) -1]100              |
|    |                                                    |

A primeira fórmula (a) é a de cunho geral. Serve para qualquer situação de cálculo. Indiferente do degrau que se esteja na escada e o degrau de destino.

Já a segunda fórmula (**b**), é mais específica e é indicada para quando estivermos "subindo" degraus desta escada.

A terceira fórmula (c) tem sua aplicação dirigida para quando estivermos "descendo" os degraus desta escada.

Importante destacar que para a utilização da segunda e da terceira fórmula, os múltiplos e submúltiplos das unidades de tempo – prazo - deverão ser inteiros.

#### 1.2 Utilização de calculadora financeira

Nos cálculos de taxa de juro equivalente há recursos bem interessantes nas calculadoras financeiras. No desenvolvimento do conteúdo, iremos utilizar como padrão, a calculadora financeira HP 12C.

Abaixo, um passo a passo das teclas que deverão ser utilizadas para a obtenção da taxa de juro equivalente, dependendo da situação particular de cálculo que se necessite.

ieq = [(1 + i )" -1]100 ieq = [(<sup>N</sup>v1+i )-1]100 ieq = [(<sup>N</sup>v1 + i )<sup>n</sup> -1]100 HP 12C Taxa de juros ENTER Taxa de juros ENTER Taxa de juros ENTER 100 ÷ 100 ÷ 100 ÷ 1+ "N" 1/x "N" 1/x 1 -100 X "n" y 100 X 100 X

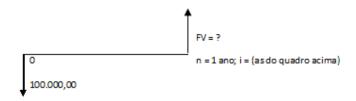
Quadro 2: Passo a passo

#### 1.3 Equivalência de taxas de juros entre si

Se duas taxas de juros são equivalentes entre si e, uma terceira é equivalente a uma delas, todas elas serão equivalentes entre si.

Se as taxas de juros **A** e **B** são equivalentes entre si e, **C**, é equivalente a **A** logo, **C**, também é equivalente a **B**. Qual seja todas são equivalentes entre si.

#### 1.4 Entendendo equivalência de taxas de juros.

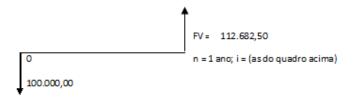

Equivalência, em taxas de juros, significa dizer que é indiferente ao investidor ou tomador de recursos utilizar, para o cálculo de rendimentos ou encargos, qualquer uma das taxas dadas, visto que o resultado final será o mesmo.

Equivalência de taxas de juros é obter o mesmo resultado final, montante, indiferente da taxa tomada como base de cálculo. Exemplificando, admita que um investidor queira efetuar uma aplicação única, de uma reserva que possui, pelo prazo de um ano. Consultando alguns bancos, obteve-se dos mesmos as seguintes informações quanto à taxa de juros e o período da mesma:

| Banco | Taxa de juros | Período         |
|-------|---------------|-----------------|
| A     | 1,00%         | Ao mês          |
| В     | 2,01%         | Ao bimestre     |
| С     | 3,03010%      | Ao trimestre    |
| D     | 4,060401%     | Ao quadrimestre |
| E     | 6,152015%     | Ao semestre     |
| F     | 12,682503%    | Ao ano.         |

O valor inicial da aplicação é de 100.000,00 u.m.

Qual o valor de resgate, montante, que este investidor terá ao final do período da aplicação? Graficamente, a situação inicial é a abaixo:




Os resultados, depois de decorrido o prazo de aplicação, podem ser conferidos no quadro seguinte:

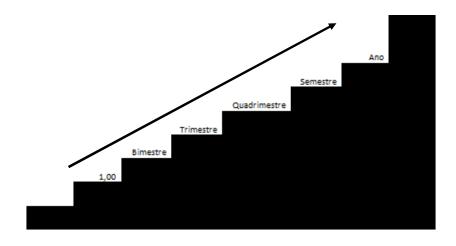
Quadro 3: Resultados conforme taxa de juros

| Banco | Taxa de juros | Período         | Valor inicial, u.m. | Montante   |
|-------|---------------|-----------------|---------------------|------------|
| Α     | 1,00%         | Ao mês          | 100.000,00          | 112.682,50 |
| В     | 2,01%         | Ao bimestre     | 100.000,00          | 112.682,50 |
| С     | 3,03010%      | Ao trimestre    | 100.000,00          | 112.682,50 |
| D     | 4,060401%     | Ao quadrimestre | 100.000,00          | 112.682,50 |
| E     | 6,152015%     | Ao semestre     | 100.000,00          | 112.682,50 |
| F     | 12,682503%    | Ao ano.         | 100.000,00          | 112.682,50 |

Como o montante é igual em qualquer das situações (o prazo de aplicação é de um ano, para todas as situações, também) fica claro que é indiferente utilizar qualquer das taxas de juros e, isto, é o entendimento de taxas de juros equivalentes. Graficamente, teremos, após o decurso do prazo da aplicação:



#### 1.5 Apresentação de modelos para cálculo


Para uma abordagem prática, vamos definir que conhecemos uma determinada taxa de juros e que queiramos sua equivalência em unidades de tempo maiores. Observe o quadro abaixo.

Quadro 4: Modelo básico para desenvolvimento de cálculo

| Ī | Таха % | Таха %      | Таха %       | Таха %          | Таха %      | Taxa % |
|---|--------|-------------|--------------|-----------------|-------------|--------|
|   | Ao mês | Ao bimestre | Ao trimestre | Ao quadrimestre | Ao semestre | Ao ano |
|   | 1,00%  | ?           | ?            | ?               | ?           | ?      |

O entendimento pode ser dado como: Dada a taxa de juros de 1,00% a.m. qual é a taxa de juros equivalente ao bimestre, trimestre, quadrimestre, semestre e ano?

Se retornarmos à figura da escada e seus degraus, constatamos o que temos abaixo:



O entendimento é que se está em um degrau da base da escada, mês, e quer-se galgar degraus acima deste. Logo, concluí-se que o conceito a ser empregado é o de potência.

Para a resolução, pode-se utilizar a fórmula geral, "**a**", ou "**b**" do item 1.1. A demonstração para todas as unidades de tempo da escada acima, estão nos quadros seguintes.

Como padronização, utiliza-se nos cálculos os resultados obtidos até a sexta casa decimal. Assim, obtêm-se uma aproximação melhor nos resultados. O ideal, quando da utilização de calculadoras, que se façam os cálculos de forma contínua com os recursos existentes em cada modelo de máquina. Com isto, a aproximação torna-se cada vez mais próxima do resultado.

#### a) Mês para bimestre

| Fórmula específica                 | Fórmula geral                                   | HP 12C           |
|------------------------------------|-------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100 | $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$         | 1,00 ENTER       |
| $ieq_{ab} = [(1 + 0.01)^2 - 1]100$ | $ieq_{ab} = [(^{1}\sqrt{1} + 0.01)^{2} - 1]100$ | 100 ÷            |
| $ieq_{ab} = [(1,01)^2 -1]100$      | $ieq_{ab} = [(^1\sqrt{1},01)^2 -1]100$          | 1+               |
| ieq <sub>ab</sub> = (1,0201 -1)100 | $ieq_{ab} = [(1,01)^2 - 1]100$                  | 2 y <sup>X</sup> |
| $ieq_{ab} = (0,0201)100$           | ieq <sub>ab</sub> = (1,0201 -1)100              | 1 -              |
| ieq = 2,010000% a.b.               | $ieq_{ab} = (0,0201)100$                        | 100 X            |
|                                    | ieq = 2,010000% a.b.                            | 2,010000% a.b.   |

# b) Mês para trimestre

| Fórmula específica                    | Fórmula geral                                   | HP 12C           |
|---------------------------------------|-------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100    | $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$         | 1,00 ENTER       |
| $ieq_{at} = [(1 + 0.01)^3 - 1]100$    | $ieq_{at} = [(^{1}\sqrt{1} + 0.01)^{3} - 1]100$ | 100 ÷            |
| $ieq_{at} = [(1,01)^3 -1]100$         | $ieq_{at} = [(^{1}\sqrt{1},01)^{3}-1]100$       | 1+               |
| ieq <sub>at</sub> = (1,0303010 -1)100 | $ieq_{at} = [(1,01)^3 -1]100$                   | 3 y <sup>X</sup> |
| ieq <sub>at</sub> = (0,0303010)100    | ieq <sub>at</sub> = (1,0303010 -1)100           | 1 -              |
| ieq = 3,03010% a.t.                   | ieq <sub>at</sub> = (0,0303010)100              | 100 X            |
|                                       | ieq = 3,03010% a.t.                             | 3,03010% a.t.    |

#### c) Mês para quadrimestre

| Fórmula específica                     | Fórmula geral                                   | HP 12C           |
|----------------------------------------|-------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100     | $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$         | 1,00 ENTER       |
| $ieq_{aq} = [(1 + 0.01)^4 - 1]100$     | $ieq_{aq} = [(^{1}\sqrt{1} + 0.01)^{4} - 1]100$ | 100 ÷            |
| $ieq_{aq} = [(1,01)^4 -1]100$          | $ieq_{aq} = [(^{1}\sqrt{1},01)^{4}-1]100$       | 1+               |
| ieq <sub>aq</sub> = (1,04060401 -1)100 | $ieq_{aq} = [(1,01)^4 - 1]100$                  | 4 y <sup>X</sup> |
| ieq <sub>aq</sub> = (0,04060401)100    | ieq <sub>aq</sub> = (1,04060401 -1)100          | 1 -              |
| ieq = 4,060401% a.q.                   | ieq <sub>aq</sub> = (0,04060401)100             | 100 X            |
|                                        | ieq = 4,060401% a.q.                            | 4,060401% a.q.   |

# d) Mês para semestre

| Fórmula específica                     | Fórmula geral                                   | HP 12C           |
|----------------------------------------|-------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100     | $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$         | 1,00 ENTER       |
| $ieq_{as} = [(1 + 0.01)^6 - 1]100$     | $ieq_{as} = [(^{1}\sqrt{1} + 0.01)^{6} - 1]100$ | 100 ÷            |
| $ieq_{as} = [(1,01)^6 - 1]100$         | $ieq_{as} = [(^{1}\sqrt{1},01)^{6}-1]100$       | 1+               |
| ieq <sub>as</sub> = (1,06152015 -1)100 | $ieq_{as} = [(1,01)^6 -1]100$                   | 6 y <sup>X</sup> |

| ieq = 6,152015% a.s.         | ieq <sub>as</sub> = (0,06152015)100<br>ieq = 6,152015% a.s. | 100 X<br><b>6,152015% a.s.</b> |
|------------------------------|-------------------------------------------------------------|--------------------------------|
| $ieq_{as} = (0.06152015)100$ | $ieq_{as} = (1,06152015 - 1)100$                            | 1 -                            |

# e) Mês para ano

| Fórmula específica                     | Fórmula geral                                    | HP 12C            |
|----------------------------------------|--------------------------------------------------|-------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100     | $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$          | 1,00 ENTER        |
| $ieq_{aa} = [(1 + 0.01)^{12} - 1]100$  | $ieq_{aa} = [(^{1}\sqrt{1} + 0.01)^{12} - 1]100$ | 100 ÷             |
| $ieq_{aa} = [(1,01)^{12} -1]100$       | $ieq_{aa} = [(^{1}\sqrt{1},01)^{12} -1]100$      | 1+                |
| ieq <sub>aa</sub> = (1,12682503 -1)100 | $ieq_{aa} = [(1,01)^{12} -1]100$                 | 12 y <sup>x</sup> |
| ieq <sub>aa</sub> = (0,12682503)100    | ieq <sub>aa</sub> = (1,12682503 -1)100           | 1 -               |
| ieq = 12,682503% a.a.                  | ieq <sub>aa</sub> = (0,12682503)100              | 100 X             |
|                                        | ieq = 12,682503% a.a.                            | 12,682503% a.a.   |

Na sequência, pode-se calcular a taxa equivalente de bimestre para as unidades de tempo superiores. Acompanhe:

# f) Bimestre para trimestre

| Fórmula específica                          | Fórmula geral                                      | HP 12C               |
|---------------------------------------------|----------------------------------------------------|----------------------|
| ieq = [(1 + i) <sup>n/N</sup> -1]100        | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 2,010000 ENTER       |
| $ieq_{at} = [(1 + 0.02010000)^{3/2} -1]100$ | $ieq_{at} = [(^2V1 + 0.02010000)^3 - 1]100$        | 100 ÷                |
| $ieq_{at} = [(1,02010000)^{1,5} -1]100$     | $ieq_{at} = [(^2v1,02010000)^3 -1]100$             | 1+                   |
| ieq <sub>at</sub> = (1,0303010 -1)100       | $ieq_{at} = [(1,010000)^3 -1]100$                  | 2 1/x y <sup>x</sup> |
| ieq <sub>at</sub> = (0,0303010)100          | ieq <sub>at</sub> = (1,0303010 -1)100              | 3 y <sup>x</sup>     |
| ieq = 3,030100% a.t.                        | ieq <sub>at</sub> = (0,0303010)100                 | 1 -                  |
|                                             | ieq = 3,030100% a.t.                               | 100 X                |
|                                             |                                                    | 3,030100% a.t.       |

# g) Bimestre para quadrimestre

| Fórmula específica                     | Fórmula geral                                      | HP 12C           |
|----------------------------------------|----------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100     | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 2,010000 ENTER   |
| $ieq_{aq} = [(1 + 0.020100)^2 - 1]100$ | $ieq_{aq} = [(^2V1 + 0.020100)^4 - 1]100$          | 100 ÷            |
| $ieq_{aq} = [(1,020100)^2 -1]100$      | $ieq_{aq} = [(^2v1,020100)^4 -1]100$               | 1+               |
| ieq <sub>aq</sub> = (1,04060401 -1)100 | $ieq_{aq} = [(1,010000)^4 -1]100$                  | 2 y <sup>x</sup> |
| ieq <sub>aq</sub> = (0,04060401)100    | ieq <sub>aq</sub> = (1,04060401 -1)100             | 1 -              |
| ieq = 4,060401% a.q.                   | ieq <sub>aq</sub> = (0,04060401)100                | 100 X            |
|                                        | ieq = 4,060401% a.q.                               | 4,060401% a.q.   |

# h) Bimestre para semestre

| Fórmula específica                     | Fórmula geral                                      | HP 12C         |
|----------------------------------------|----------------------------------------------------|----------------|
| ieq = [(1 + i) <sup>n</sup> -1]100     | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 2,010000 ENTER |
| $ieq_{as} = [(1 + 0.020100)^3 - 1]100$ | $ieq_{as} = [(^2V1 + 0.020100)^6 - 1]100$          | 100 ÷          |
| $ieq_{as} = [(1,020100)^3 -1]100$      | $ieq_{as} = [(^2\sqrt{1},020100)^6 -1]100$         | 1+             |

| ieq <sub>as</sub> = (1,06152015 -1)100 | $ieq_{as} = [(1,010000)^6 -1]100$     | 3 y <sup>x</sup> |
|----------------------------------------|---------------------------------------|------------------|
| ieq <sub>as</sub> = (0,06152015)100    | ieq <sub>as</sub> = (1,6152015 -1)100 | 1 -              |
| ieq = 6,152015% a.s.                   | ieq <sub>as</sub> = (0,06152015)100   | 100 X            |
|                                        | ieq = 6,152015% a.s.                  | 6,152015% a.s.   |

# i) Bimestre para ano

| Fórmula específica                                  | Fórmula geral                                      | HP 12C           |
|-----------------------------------------------------|----------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100                  | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 2,010000 ENTER   |
| $ieq_{aa} = [(1 + 0.020100)^6 - 1]100$              | $ieq_{aa} = [(^2V1 + 0.020100)^{12} - 1]100$       | 100 ÷            |
| ieq <sub>aa</sub> = [(1,020100) <sup>6</sup> -1]100 | $ieq_{aa} = [(^2V1,020100)^{12} -1]100$            | 1+               |
| ieq <sub>aa</sub> = (1,12682503 -1)100              | $ieq_{aa} = [(1,010000)^{12} -1]100$               | 6 y <sup>x</sup> |
| ieq <sub>aa</sub> = (0,12682503)100                 | ieq <sub>aa</sub> = (1,012682503 -1)100            | 1 -              |
| ieq = 12,682503% a.a.                               | ieq <sub>aa</sub> = (0,012682503)100               | 100 X            |
|                                                     | ieq = 12,682503% a.a.                              | 12,682503% a.a.  |

Continuando, pode-se calcular de trimestre, de quadrimestre, de semestre e de ano, conforme a sequência abaixo.

# j) De trimestre para quadrimestre

| Fórmula específica                         | Fórmula geral                            | HP 12C               |
|--------------------------------------------|------------------------------------------|----------------------|
| ieq = [(1 + i) <sup>n/N</sup> -1]100       | $ieq = [(^{N}v1 + i)^{n} - 1]100$        | 3,030100 ENTER       |
| $ieq_{aq} = [(1 + 0.030301)^{4/3} - 1]100$ | $ieq_{aq} = [(^3v1 + 0.030301)^4 -1]100$ | 100 ÷                |
| $ieq_{aq} = [(1,030301)^{1,333333} -1]100$ | $ieq_{aq} = [(^3v1,030301)^4 -1]100$     | 1+                   |
| ieq <sub>aq</sub> = (1,04060401 -1)100     | $ieq_{aq} = [(1,010000)^4 -1]100$        | 3 1/x y <sup>x</sup> |
| ieq <sub>aq</sub> = (0,04060401)100        | ieq <sub>aq</sub> = (1,04060401 -1)100   | 4 y <sup>x</sup>     |
| ieq = 4,060401% a.q.                       | ieq <sub>aq</sub> = (0,04060401)100      | 1 -                  |
|                                            | ieq = 4,060401% a.q.                     | 100 X                |
|                                            |                                          | 4,060401% a.q.       |

# k) De trimestre para semestre

| Fórmula específica                     | Fórmula geral                                      | HP 12C           |
|----------------------------------------|----------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100     | ieq = [( <sup>N</sup> v1 + i ) <sup>n</sup> -1]100 | 3,030100 ENTER   |
| $ieq_{as} = [(1 + 0.030301)^2 - 1]100$ | $ieq_{as} = [(^3V1 + 0.030301)^6 - 1]100$          | 100 ÷            |
| $ieq_{as} = [(1,030301)^2 -1]100$      | $ieq_{as} = [(^3V1,030301)^6 -1]100$               | 1+               |
| ieq <sub>as</sub> = (1,06152015 -1)100 | $ieq_{as} = [(1,010000)^6 -1]100$                  | 2 y <sup>X</sup> |
| ieq <sub>as</sub> = (0,06152015)100    | ieq <sub>as</sub> = (1,06152015 -1)100             | 1 -              |
| ieq = 6,152015% a.s.                   | ieq <sub>as</sub> = (0,06152015)100                | 100 X            |
|                                        | ieq = 6,152015 % a.s.                              | 6,152015% a.s.   |

# I) De trimestre para ano

| Fórmula específica                     | Fórmula geral                               | HP 12C           |
|----------------------------------------|---------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100     | $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$     | 3,030100 ENTER   |
| $ieq_{aa} = [(1 + 0.030301)^4 - 1]100$ | $ieq_{aa} = [(^3v1 + 0.030301)^{12} -1]100$ | 100 ÷            |
| $ieq_{aa} = [(1,030301)^4 -1]100$      | $ieq_{aa} = [(^3V1,030301)^{12} -1]100$     | 1+               |
| ieq <sub>aa</sub> = (1,12682503 -1)100 | $ieq_{aa} = [(1,010000)^{12} -1]100$        | 4 y <sup>X</sup> |
| ieq <sub>aa</sub> = (0,12682503)100    | ieq <sub>aa</sub> = (1,12682503 -1)100      | 1 -              |
| ieq = 12,682503% a.a.                  | ieq <sub>aa</sub> = (0,12682503)100         | 100 X            |
|                                        | ieq = 12,682503 % a.a.                      | 12,682503% a.a.  |

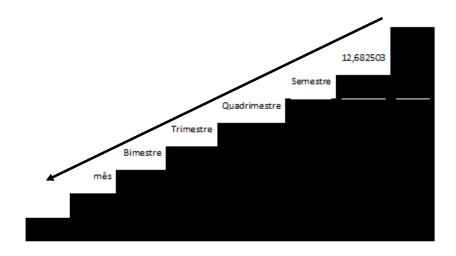
# m) De quadrimestre para semestre

| Fórmula específica                           | Fórmula geral                              | HP 12C               |
|----------------------------------------------|--------------------------------------------|----------------------|
| ieq = [(1 + i) <sup>n/N</sup> -1]100         | $ieq = [(^{N}v1 + i)^{n} - 1]100$          | 4,060401 ENTER       |
| $ieq_{as} = [(1 + 0.04060401)^{6/4} - 1]100$ | $ieq_{as} = [(^4V1 + 0.04060401)^6 -1]100$ | 100 ÷                |
| $ieq_{as} = [(1,04060401)^{1,50} -1]100$     | $ieq_{as} = [(^4V1,04060401)^6 -1]100$     | 1+                   |
| ieq <sub>as</sub> = (1,061520 -1)100         | $ieq_{as} = [(1,010000)^6 -1]100$          | 4 1/x y <sup>x</sup> |
| ieq <sub>as</sub> = (0,06152015)100          | ieq <sub>as</sub> = (1,06152015 -1)100     | 6 y <sup>X</sup>     |
| ieq = 6,152015% a.s.                         | ieq <sub>as</sub> = (0,06152015)100        | 1 -                  |
|                                              | ieq = 6,152015% a.s.                       | 100 X                |
|                                              |                                            | 6,152015% a.s.       |

# n) De quadrimestre para ano

| Fórmula específica                       | Fórmula geral                                      | HP 12C           |
|------------------------------------------|----------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100       | ieq = [( <sup>N</sup> v1 + i ) <sup>n</sup> -1]100 | 4,060401 ENTER   |
| $ieq_{aa} = [(1 + 0.04060401)^3 - 1]100$ | $ieq_{aa} = [(^{4}V1 + 0.04060401)^{12} - 1]100$   | 100 ÷            |
| $ieq_{aa} = [(1,04060401)^3 -1]100$      | $ieq_{aa} = [(^4V1,04060401)^{12} -1]100$          | 1+               |
| ieq <sub>aa</sub> = (1,12682503 -1)100   | $ieq_{aa} = [(1,010000)^{12} -1]100$               | 3 y <sup>X</sup> |
| ieq <sub>aa</sub> = (0,12682503)100      | ieq <sub>aa</sub> = (1,12682503 -1)100             | 1 -              |
| ieq = 12,682503% a.a.                    | ieq <sub>aa</sub> = (0,12682503)100                | 100 X            |
|                                          | ieq = 12,682503 % a.a.                             | 12,682503% a.a.  |

# o) De semestre para ano


| Fórmula específica                      | Fórmula geral                                      | HP 12C           |
|-----------------------------------------|----------------------------------------------------|------------------|
| ieq = [(1 + i) <sup>n</sup> -1]100      | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 6,152015 ENTER   |
| $ieq_{aa} = [(1 + 0.06152015)^2 -1]100$ | $ieq_{aa} = [(^{6}V1 + 0,06152015)^{12} -1]100$    | 100 ÷            |
| $ieq_{aa} = [(1,06152015)^2 -1]100$     | $ieq_{aa} = [(^{6}V1,06152015)^{12} -1]100$        | 1+               |
| ieq <sub>aa</sub> = (1,12682503 -1)100  | $ieq_{aa} = [(1,010000)^{12} -1]100$               | 2 y <sup>X</sup> |
| ieq <sub>aa</sub> = (0,12682503)100     | ieq <sub>aa</sub> = (1,12682503 -1)100             | 1 -              |
| ieq = 12,682503% a.a.                   | ieq <sub>aa</sub> = (0,12682503)100                | 100 X            |
|                                         | ieq = 12,682503 % a.a.                             | 12,682503% a.a.  |

Com isto, confirmamos que as taxas de 1,000000% a.m.; 2,010000% a.b.; 3,030100% a.t.; 4,060401% a.q.; 6,152015% a.s. e 12,682503% a.a. são equivalentes entre si. Logo, produzem o mesmo resultado, sendo indiferente a sua aplicação.

**Quadro 5: Taxas equivalentes** 

|                | Taxas equivalentes |           |              |           |            |
|----------------|--------------------|-----------|--------------|-----------|------------|
| Taxa           | Ao Ao Ao Ao        |           |              |           |            |
| Inicial        | Bimestre           | Trimestre | Quadrimestre | Semestre  | Ano        |
| 1,000000% a.m. | 2,010000%          | 3,030100% | 4,060401%    | 6,152015% | 12,682503% |

Retornando a figura da escada, da mesma forma que é possível galgar degraus acima, podese descê-los. O sentido, descer, é o oposto de subir. Logo, se neste usávamos potência, agora, iremos utilizar de radiciação.



No intuito de comprovar que sempre é possível retornar a taxa de juros inicial, vamos partir, agora, da taxa de juros anual de 12,682503% e calcular para as unidades de tempo inferiores a ano.

Quadro 6: Modelo básico para desenvolvimento de cálculo

| Таха %     | Таха %      | Таха %          | Таха %       | Таха %      | Taxa % |
|------------|-------------|-----------------|--------------|-------------|--------|
| Ao ano     | Ao semestre | Ao quadrimestre | Ao trimestre | Ao bimestre | Ao mês |
| 12,682503% | ?           | ?               | ?            | ?           | ?      |

# a) De ano para semestre

| Fórmula específica                       | Fórmula geral                                      | HP 12C               |
|------------------------------------------|----------------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> √1 + i ) -1]100    | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 12,682503 ENTER      |
| $ieq_{as} = [(^2v1 + 0.12682503) -1]100$ | $ieq_{as} = [(^2V1 + 0.12682503)^1 - 1]100$        | 100 ÷                |
| $ieq_{as} = [(^2v1, 12682503) -1]100$    | $ieq_{as} = [(^2v1, 12682503)^1 - 1]100$           | 1+                   |
| ieq <sub>as</sub> = (1,06152015 -1)100   | $ieq_{as} = [(1,06152015)^{1} -1]100$              | 2 1/x y <sup>x</sup> |
| ieq <sub>as</sub> = (0,06152015)100      | ieq <sub>as</sub> = (1,06152015 -1)100             | 1 -                  |
| ieq = 6,152015% a.s.                     | ieq <sub>as</sub> = (0,06152015)100                | 100 X                |
|                                          | ieq = 6, 152015% a.s.                              | 6,152015% a.s.       |

# b) De ano para quadrimestre

| Fórmula específica                       | Fórmula geral                                      | HP 12C               |
|------------------------------------------|----------------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> √1 + i ) -1]100    | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 12,682503 ENTER      |
| $ieq_{aq} = [(^3v1 + 0.12682503) -1]100$ | $ieq_{aq} = [(^3V1 + 0,12682503)^1 -1]100$         | 100 ÷                |
| $ieq_{aq} = [(^3v1, 12682503) -1]100$    | $ieq_{aq} = [(^3V1, 12682503)^1 - 1]100$           | 1+                   |
| ieq <sub>aq</sub> = (1,04060401 -1)100   | $ieq_{aq} = [(1,04060401)^{1} -1]100$              | 3 1/x y <sup>x</sup> |
| $ieq_{aq} = (0.04060401)100$             | ieq <sub>aq</sub> = (1,04060401 -1)100             | 1 -                  |
| ieq = 4,060401% a.q.                     | ieq <sub>aq</sub> = (0,04060401)100                | 100 X                |
|                                          | ieq = 4, 060401% a.q.                              | 4,060401% a.q.       |

# c) De ano para trimestre

| Fórmula específica                         | Fórmula geral                              | HP 12C               |
|--------------------------------------------|--------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> V1 + i ) -1]100      | $ieq = [(^{N}v1 + i)^{n} - 1]100$          | 12,682503 ENTER      |
| $ieq_{at} = [(^{4}v1 + 0,12682503) -1]100$ | $ieq_{at} = [(^4V1 + 0,12682503)^1 -1]100$ | 100 ÷                |
| $ieq_{at} = [(^{4}v1, 12682503) -1]100$    | $ieq_{at} = [(^4V1, 12682503)^1 - 1]100$   | 1+                   |
| ieq <sub>at</sub> = (1,03030100 -1)100     | $ieq_{at} = [(1,03030100)^{1} -1]100$      | 4 1/x y <sup>x</sup> |
| ieq <sub>at</sub> = (0,03030100)100        | ieq <sub>at</sub> = (1,03030100 -1)100     | 1 -                  |
| ieq = 3,030100% a.t.                       | ieq <sub>at</sub> = (0,03030100)100        | 100 X                |
|                                            | ieq = 3, 030100% a.t.                      | 3,030100% a.t.       |

# d) De ano para bimestre

| Fórmula específica                        | Fórmula geral                                      | HP 12C               |
|-------------------------------------------|----------------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> √1 + i ) -1]100     | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 12,682503 ENTER      |
| $ieq_{ab} = [(^6V1 + 0.12682503) - 1]100$ | $ieq_{ab} = [(^6V1 + 0,12682503)^1 - 1]100$        | 100 ÷                |
| $ieq_{ab} = [(^{6}V1, 12682503) -1]100$   | $ieq_{ab} = [(^6V1, 12682503)^1 - 1]100$           | 1+                   |
| $ieq_{ab} = (1,020100 - 1)100$            | $ieq_{ab} = [(1,020100)^{1} -1]100$                | 6 1/x y <sup>x</sup> |
| $ieq_{ab} = (0.020100)100$                | ieq <sub>ab</sub> = (1,020100 -1)100               | 1 -                  |
| ieq = 2,010000% a.b.                      | ieq <sub>ab</sub> = (0,020100)100                  | 100 X                |
|                                           | ieq = 2,010000% a.b.                               | 2,010000% a.b.       |

# e) De ano para mês

| Fórmula específica                          | Fórmula geral                                   | HP 12C                |
|---------------------------------------------|-------------------------------------------------|-----------------------|
| ieq = [( <sup>N</sup> v1 + i ) -1]100       | $ieq = [(^{N}V1 + i)^{n} - 1]100$               | 12,682503 ENTER       |
| $ieq_{am} = [(^{12}V1 + 0,12682503) -1]100$ | $ieq_{am} = [(^{12}V1 + 0,12682503)^{1} -1]100$ | 100 ÷                 |
| $ieq_{am} = [(^{12}V1, 12682503) -1]100$    | $leq_{am} = [(^{12}v1, 12682503)^{1} - 1]100$   | 1+                    |
| ieq <sub>am</sub> = (1,010000 -1)100        | $ieq_{am} = [(1,010000)^{1} -1]100$             | 12 1/x y <sup>x</sup> |
| ieq <sub>am</sub> = (0,010000)100           | ieq <sub>am</sub> = (1,010000 -1)100            | 1 -                   |
| ieq = 1,000000% a.m.                        | ieq <sub>am</sub> = (0,010000)100               | 100 X                 |
|                                             | ieq = 1,000000% a.m.                            | 1,000000% a.m.        |

Da mesma forma, podemos partir de qualquer outra taxa de juros e ir calculando para as unidades de tempo inferiores. De semestre, quadrimestre, trimestre, bimestre, mês. O desenvolvimento para cada situação está abaixo.

# f) De semestre para quadrimestre

| Fórmula específica                            | Fórmula geral                                      | HP 12C               |
|-----------------------------------------------|----------------------------------------------------|----------------------|
| $ieq = [(1 + i)^{n/N} - 1]100$                | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 6,152015 ENTER       |
| $ieq_{aq} = [(1 + 0.06152015)^{4/6} -1]100$   | $ieq_{aq} = [(^{6}v1 + 0.06152015)^{4} - 1]100$    | 100 ÷                |
| $ieq_{aq} = [(1,06152015)^{0,6666667} -1]100$ | $Ieq_{aq} = [(^6V1,06152015)^4 -1]100$             | 1+                   |
| ieq <sub>aq</sub> = (1,04060401 -1)100        | $ieq_{aq} = [(1,010000)^4 -1]100$                  | 6 1/x y <sup>x</sup> |
| ieq <sub>aq</sub> = (0,04060401)100           | Ieq <sub>aq</sub> = (1,04060401 -1)100             | 4 y <sup>x</sup>     |
| ieq = 4,060401% a.q.                          | ieq <sub>aq</sub> = (0,04060401)100                | 1 -                  |
|                                               | ieq = 4,060401% a.q.                               | 100 X                |
|                                               |                                                    | 4,060401% a.q.       |

# g) De semestre para trimestre

| Fórmula específica                       | Fórmula geral                                      | HP 12C               |  |
|------------------------------------------|----------------------------------------------------|----------------------|--|
| ieq = [( <sup>N</sup> √1 + i ) -1]100    | ieq = [( <sup>N</sup> V1 + i ) <sup>n</sup> -1]100 | 6,152015 ENTER       |  |
| $ieq_{at} = [(^2V1 + 0.06152015) -1]100$ | $ieq_{at} = [(^2V1 + 0.06152015)^1 - 1]100$        | 100 ÷                |  |
| $ieq_{at} = [(^2v1,06152015) -1]100$     | $leq_{at} = [(^2v1,06152015)^1 -1]100$             | 1+                   |  |
| ieq <sub>at</sub> = (1,03030100 -1)100   | $ieq_{at} = [(1,03030100)^{1} -1]100$              | 2 1/x y <sup>x</sup> |  |
| ieq <sub>at</sub> = (0,03030100)100      | ieq <sub>at</sub> = (1,03030100 -1)100             | 1 -                  |  |
| ieq = 3,030100% a.t.                     | ieq <sub>at</sub> = (0,03030100)100                | 100 X                |  |
|                                          | ieq = 3,030100% a.t.                               | 3,030100% a.t.       |  |

# h) De semestre para bimestre

| Fórmula específica                       | Fórmula geral                                      | HP 12C               |
|------------------------------------------|----------------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> √1 + i ) -1]100    | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 6,152015 ENTER       |
| $ieq_{ab} = [(^3v1 + 0.06152015) -1]100$ | $ieq_{ab} = [(^3V1 + 0.06152015)^1 - 1]100$        | 100 ÷                |
| $ieq_{ab} = [(^3v1,06152015) -1]100$     | $leq_{ab} = [(^3v1,06152015)^1 -1]100$             | 1+                   |
| ieq <sub>ab</sub> = (1,020100 -1)100     | $ieq_{ab} = [(1,020100)^{1} -1]100$                | 3 1/x y <sup>x</sup> |
| ieq <sub>ab</sub> = (0,020100)100        | ieq <sub>ab</sub> = (1,020100 -1)100               | 1 -                  |
| ieq = 2,010000% a.b.                     | ieq <sub>ab</sub> = (0,020100)100                  | 100 X                |
|                                          | ieq = 2,010000% a.b.                               | 2,010000% a.b.       |

# i) De semestre para mês

| Fórmula específica                       | Fórmula geral                                      | HP 12C               |
|------------------------------------------|----------------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> v1 + i ) -1]100    | ieq = [( <sup>N</sup> v1 + i ) <sup>n</sup> -1]100 | 6,152015 ENTER       |
| $ieq_{am} = [(^6V1 + 0.06152015) -1]100$ | $ieq_{am} = [(^{6}V1 + 0.06152015)^{1} - 1]100$    | 100 ÷                |
| $ieq_{am} = [(^6V1,06152015) -1]100$     | $leq_{am} = [(^6V1,06152015)^1 -1]100$             | 1+                   |
| ieq <sub>am</sub> = (1,010000 -1)100     | $ieq_{am} = [(1,010000)^{1} -1]100$                | 6 1/x y <sup>x</sup> |
| ieq <sub>am</sub> = (0,010000)100        | ieq <sub>am</sub> = (1,010000 -1)100               | 1 -                  |
| ieq = 1,000000% a.m.                     | ieq <sub>am</sub> = (0,010000)100                  | 100 X                |
|                                          | ieq = 1,000000% a.m.                               | 1,000000% a.m.       |

# j) De quadrimestre para trimestre

| Fórmula específica                          | Fórmula geral                               | HP 12C               |
|---------------------------------------------|---------------------------------------------|----------------------|
| $ieq = [(1 + i)^{n/N} - 1]100$              | $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$     | 4,060401 ENTER       |
| $ieq_{at} = [(1 + 0.04060401)^{3/4} -1]100$ | $ieq_{at} = [(^4v1 + 0.04060401)^3 - 1]100$ | 100 ÷                |
| $ieq_{at} = [(1,04060401)^{0.75} -1]100$    | $leq_{at} = [(^4v1,04060401)^3 -1]100$      | 1+                   |
| ieq <sub>at</sub> = (1,03030100 -1)100      | $ieq_{at} = [(1,010000)^3 -1]100$           | 4 1/x y <sup>x</sup> |
| $ieq_{at} = (0.03030100)100$                | leq <sub>at</sub> = (1,03030100 -1)100      | 3 y <sup>x</sup>     |
| ieq = 3,030100% a.t.                        | ieq <sub>at</sub> = (0,03030100)100         | 1 -                  |
|                                             | ieq = 3,030100% a.t.                        | 100 X                |
|                                             |                                             | 3,030100% a.t.       |

# k) De quadrimestre para bimestre

| Fórmula específica                        | Fórmula geral                               | HP 12C               |
|-------------------------------------------|---------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> √1 + i ) -1]100     | $ieq = [(^{N}v1 + i)^{n} - 1]100$           | 4,060401 ENTER       |
| $ieq_{ab} = [(^2v1 + 0.04060401) - 1]100$ | $ieq_{ab} = [(^2v1 + 0.04060401)^1 - 1]100$ | 100 ÷                |
| $ieq_{ab} = [(^2V1,04060401) -1]100$      | $leq_{ab} = [(^2v1,04060401)^1 -1]100$      | 1+                   |
| $ieq_{ab} = (1,020100 - 1)100$            | $ieq_{ab} = [(1,020100)^{1} -1]100$         | 2 1/x y <sup>x</sup> |
| $ieq_{ab} = (0.020100)100$                | ieq <sub>ab</sub> = (1,020100 -1)100        | 1-                   |
| ieq = 2,010000% a.b.                      | ieq <sub>ab</sub> = (0,020100)100           | 100 X                |
|                                           | ieq = 2,010000% a.b.                        | 2,010000% a.b.       |

# I) De quadrimestre para mês

| Fórmula específica                       | Fórmula geral                                      | HP 12C               |
|------------------------------------------|----------------------------------------------------|----------------------|
| ieq = [( <sup>N</sup> √1 + i ) -1]100    | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 4,060401 ENTER       |
| $ieq_{am} = [(^4v1 + 0.04060401) -1]100$ | $ieq_{am} = [(^{4}V1 + 0.04060401)^{1} -1]100$     | 100 ÷                |
| $ieq_{am} = [(^4v1,04060401) -1]100$     | $leq_{am} = [(^{4}V1,04060401)^{1} -1]100$         | 1+                   |
| ieq <sub>am</sub> = (1,010000 -1)100     | $ieq_{am} = [(1,010000)^{1} -1]100$                | 4 1/x y <sup>x</sup> |
| ieq <sub>am</sub> = (0,010000)100        | ieq <sub>am</sub> = (1,010000 -1)100               | 1 -                  |
| ieq = 1,000000% a.m.                     | ieq <sub>am</sub> = (0,010000)100                  | 100 X                |
|                                          | ieq = 1,000000% a.m.                               | 1,000000% a.m.       |

# m) De trimestre para bimestre

| Fórmula específica                           | Fórmula geral                                      | HP 12C               |
|----------------------------------------------|----------------------------------------------------|----------------------|
| $ieq = [(1 + i)^{n/N} - 1]100$               | ieq = [( <sup>N</sup> √1 + i ) <sup>n</sup> -1]100 | 3,030100 ENTER       |
| $ieq_{ab} = [(1 + 0.03030100)^{2/3} - 1]100$ | $ieq_{ab} = [(^3v1 + 0.03030100)^2 - 1]100$        | 100 ÷                |
| $ieq_{ab} = [(1,03030100)^{0,666667} -1]100$ | $leq_{ab} = [(^3v1,03030100)^2 -1]100$             | 1+                   |
| ieq <sub>ab</sub> = (1,02010000 -1)100       | $ieq_{ab} = [(1,010000)^2 -1]100$                  | 3 1/x y <sup>x</sup> |
| ieq <sub>ab</sub> = (0,020100)100            | Ieq <sub>ab</sub> = (1,020100 -1)100               | 2 y <sup>x</sup>     |
| ieq = 2,010000% a.b.                         | ieq <sub>ab</sub> = (0,020100)100                  | 1 -                  |
|                                              | ieq = 2,010000% a.b.                               | 100 X                |
|                                              |                                                    | 2,010000% a.b.       |

# n) De trimestre para mês

| Fórmula específica                       | Fórmula geral                                      | HP 12C               |  |
|------------------------------------------|----------------------------------------------------|----------------------|--|
| ieq = [( <sup>N</sup> √1 + i ) -1]100    | ieq = [( <sup>N</sup> v1 + i ) <sup>n</sup> -1]100 | 3,030100 ENTER       |  |
| $ieq_{am} = [(^3v1 + 0.03030100) -1]100$ | $ieq_{am} = [(^3V1 + 0.03030100)^1 - 1]100$        | 100 ÷                |  |
| $ieq_{am} = [(^3v1,03030100) -1]100$     | $leq_{am} = [(^3V1,03030100)^1 -1]100$             | 1+                   |  |
| ieq <sub>am</sub> = (1,010000 -1)100     | $ieq_{am} = [(1,010000)^{1} -1]100$                | 3 1/x y <sup>x</sup> |  |
| ieq <sub>am</sub> = (0,010000)100        | ieq <sub>am</sub> = (1,010000 -1)100               | 1 -                  |  |
| ieq = 1,000000% a.m.                     | ieq <sub>am</sub> = (0,010000)100                  | 100 X                |  |
|                                          | ieq = 1,000000% a.m.                               | 1,000000% a.m.       |  |

# o) De bimestre para mês

| Fórmula específica                     | Fórmula geral                             | HP 12C               |
|----------------------------------------|-------------------------------------------|----------------------|
| $ieq = [(^{N}v1 + i) -1]100$           | $ieq = [(^{N}v1 + i)^{n} - 1]100$         | 2,010000 ENTER       |
| $ieq_{am} = [(^2v1 + 0.020100) -1]100$ | $ieq_{am} = [(^2v1 + 0.020100)^1 - 1]100$ | 100 ÷                |
| $ieq_{am} = [(^2V1,020100) -1]100$     | $leq_{am} = [(^2v1,020100)^1 -1]100$      | 1+                   |
| ieq <sub>am</sub> = (1,010000 -1)100   | $ieq_{am} = [(1,010000)^{1} -1]100$       | 2 1/x y <sup>x</sup> |
| ieq <sub>am</sub> = (0,010000)100      | ieq <sub>am</sub> = (1,010000 -1)100      | 1 -                  |
| ieq = 1,000000% a.m.                   | ieq <sub>am</sub> = (0,010000)100         | 100 X                |
|                                        | ieq = 1,000000% a.m.                      | 1,000000% a.m.       |

#### 1.6 Modelos para prática e fixação

Visto acima as diversas possibilidades de equivalência de taxas de juros, a título de complemento, listamos três exercícios para prática.

a) Considere a taxa de juros de 7,50% a.a. e apresente a taxa equivalente ao dia (ano comercial).

#### Resolução:

| Fórmula geral                                      | HP 12C                 |
|----------------------------------------------------|------------------------|
| ieq = [( <sup>N</sup> v1 + i ) <sup>n</sup> -1]100 | 7,500000 ENTER         |
| $ieq_{ad} = [(^{360}v1 + 0.075000)^{1} - 1]100$    | 100 ÷                  |
| $ieq_{ad} = [(^{360}V1,075000)^1 -1]100$           | 1+                     |
| $ieq_{ad} = [(1,0000201)^{1} -1]100$               | 360 1/x y <sup>x</sup> |
| ieq <sub>ad</sub> = (1,0000201 -1)100              | 1 -                    |
| ieq <sub>ad</sub> = (0,0000201)100                 | 100 X                  |
| ieq = 0,020091% a.d.                               | 0,020091% a.d.         |

**b)** Considere a taxa de juros de 18,067337% para 999 dias (admita que uma aplicação financeira qualquer tenha gerado este rendimento no prazo dado). Calcule a taxa equivalente de juros para um ano (360 dias).

#### Resolução:

| Fórmula geral                                      | HP 12C                 |
|----------------------------------------------------|------------------------|
| $ieq = [(^{N}V1 + i)^{n} - 1]100$                  | 18,067337 ENTER        |
| $ieq_{aa} = [(^{999}v1 + 0.18067337)^{360} -1]100$ | 100 ÷                  |
| $ieq_{aa} = [(^{999}v1, 18067337)^{360} -1]100$    | 1+                     |
| $ieq_{aa} = [(1,00016627)^{360} -1]100$            | 999 1/x y <sup>x</sup> |
| ieq <sub>aa</sub> = (1,06167773 -1)100             | 360 y <sup>x</sup>     |
| ieq <sub>aa</sub> = (0,06167773)100                | 1-                     |
| ieq = 6,167773% a.a.                               | 100 X                  |
|                                                    | 6,167773% a.a.         |

c) Uma taxa de juros de 1,507513% a.t. é equivalente a quanto para 273 dias?

# Resolução:

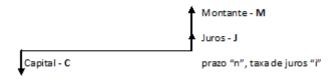
| Fórmula geral                                            | HP 12C                   |
|----------------------------------------------------------|--------------------------|
| $ieq = [(^{N}\sqrt{1} + i)^{n} - 1]100$                  | 1,507513 ENTER           |
| $leq_{273} = [(^{90}v1 + 0.01507513)^{273} - 1]100$      | 100 ÷                    |
| $leq_{273} = [(^{90}v1,01507513)^{273} -1]100$           | 1+                       |
| leq <sub>273</sub> = [(1,00016627) <sup>273</sup> -1]100 | 90 1/x y <sup>x</sup>    |
| leq <sub>273</sub> = (1,0464323 -1)100                   | 273 y <sup>X</sup>       |
| leq <sub>273</sub> = (0,0464323)100                      | 1 -                      |
| ieq = 4,643230% para 273 dias.                           | 100 X                    |
|                                                          | 4,643230% para 273 dias. |

#### 2 JUROS COMPOSTOS

No sistema financeiro em geral, as operações ali realizadas, quer no pólo ativo (aplicações), quer no pólo passivo (empréstimos, tomada de recursos) os cálculos de rendimentos e de encargos são efetuados considerando o regime de capitalização de juros, também denominado de regime exponencial.

A metodologia de cálculo é dada através de fórmulas, descritos logo abaixo. O entendimento do tópico anterior, taxas equivalentes de juros, é fundamental para a resolução das situações que envolvam cálculos de juros compostos ou exponenciais.

Fundamental, para a resolução de qualquer situação que envolva juros compostos, é de unificar as unidades de tempo do prazo e da taxa de juros. As mesmas deverão estar em uma unidade de tempo única. Não há uma regra geral de qual das variáveis deve mudar de unidade de tempo, quando não iguais. Como sugestão, adote, como padrão, a unidade de tempo do prazo e altere a unidade de tempo da taxa de juros para a do prazo.


Ainda, a taxa de juros tem que ser indicada na forma unitária, i'. Lembrando que a taxa unitária de juros é obtida pela divisão da taxa de juros percentual por 100. ( $i' = i\% \div 100$ )

O auxílio de tabelas de fatores (valor do dinheiro no tempo) é bastante útil para a resolução destes cálculos. Também, as calculadoras financeiras nos possibilitam a agilização destes cálculos. Nos modelos a serem apresentados neste tópico, utilizaremos a calculadora financeira HP 12C.

#### 2.1 Equações algébricas - fórmulas

a) 
$$J = C[(1 + i)^n - 1]$$
  
b)  $C = J \div (1 + i)^n - 1$   
c)  $i = [(^nV1+(J \div C)) - 1]100$   
d)  $n = log[(J \div C) + 1] \div log(1 + i)$ 

#### 2.2 Interpretação gráfica



#### 2.3 Apresentação de modelos para cálculo

Inicialmente, vamos apresentar um modelo padrão para desenvolvimento dos cálculos. Nele, os valores do capital inicial, da taxa de juros e de prazo, são dados. Quer-se, inicialmente, estabelecer o valor dos juros.

Após, tendo calculado o valor dos juros, retornaremos ao modelo inicial e substituiremos cada variável, determinando-a e, assim, confirmando a exatidão do modelo, visto que os valores encontrados corresponderão ao dado inicial.

Por vezes, na dúvida quanto à exatidão dos valores encontrados, sugere-se a aplicação deste algoritmo para segurança e confiabilidade dos valores encontrados.

Os valores do modelo inicial são os do quadro 7, abaixo:

Quadro 7: modelo inicial

| Capital inicial – u.m. | Prazo   | Taxa de juros | Juros – u.m. | Montante |
|------------------------|---------|---------------|--------------|----------|
| C                      | n       | i             | J            | M        |
| 100,00                 | 3 meses | 10,00% a.m.   | ?            | ?        |

A leitura do modelo é dada por: Dado um capital inicial de 100,00 u.m., aplicado por três meses, a uma taxa de juros de 10,00% a.m. Qual o valor dos juros e do montante, em u.m., ao final do período informado?

Retornando ao formulário e substituindo os dados do modelo, para os juros, temos:

| Formulário                     |                        |
|--------------------------------|------------------------|
| $J = C[(1 + i)^n - 1]$         | J = 100,00(1,3310 – 1) |
| $J = 100,00[(1 + 0,10)^3 - 1]$ | J = 100,00(0,3310)     |
| $J = 100,00[(1,10)^3 - 1]$     | J = 33,10 u.m.         |

A calculadora HP 12C não possui um algoritmo para o cálculo dos juros em regime exponencial. Todavia, nos fornece o valor do montante e, como os juros são dados pela diferença entre o montante e o capital inicial, (J = M - C), fica fácil obtermos o valor dos juros. Acompanhe:

| n | i  | PV       | PMT  | FV     | Juros |
|---|----|----------|------|--------|-------|
| 3 | 10 | (100,00) | 0,00 | 133,10 | ?     |

Neste momento, temos o montante (FV) e, como queremos os juros, basta que façamos os seguintes comandos:

| Visor      | Tecla (pressionar) |
|------------|--------------------|
| 133,10     | RCL PV             |
| (100,00)   | +                  |
| 33,10 u.m. |                    |

Observe que o valor do capital (PV) foi informado com sinal algébrico negativo. Para outros cálculos (valor do dinheiro no tempo e análise de retorno de investimento, por exemplo) é fundamental compreender o mecanismo de fluxo de caixa com que a calculadora processa os dados e retorna os dados. Faz toda a diferença compreender este mecanismo.

Com isto, encontramos o valor dos juros para o modelo dado. Podemos, agora, retornar ao modelo e testar os dados iniciais (prazo, taxa de juros e valor do capital inicial), partindo dos juros.

| Capital inicial – u.m. | Prazo   | Taxa de juros | Juros – u.m. |
|------------------------|---------|---------------|--------------|
| C                      | n       | i             | J            |
| ?                      | 3 meses | 10,00% a.m.   | 33,10        |

Acompanhe o desenvolvimento dos cálculos, para definição do valor do capital inicial:

| Formulário                        |   |                          |
|-----------------------------------|---|--------------------------|
| $C = J \div (1 + i)^n - 1$        |   | C = 33,10 ÷ (1,3310 – 1) |
| $C = 33,10 \div (1 + 0,10)^3 - 1$ |   | C = 33,10 ÷ 0,3310       |
| $C = 33,10 \div (1,10)^3 - 1$     | , | C = 100,00 u.m.          |

Como já comentado a pouco, a calculadora financeira HP 12C não possui um algoritmo para o cálculo do valor dos juros exponenciais. Logo, a princípio, não teríamos como encontrar o valor do capital, da taxa de juros e do prazo, partindo de juros. Isto será mais bem desenvolvido, logo mais, ao explorarmos montante. Assim, não faremos o desenvolvimento dos cálculos utilizando à calculadora.

Para o cálculo da taxa de juros, assumindo os valores do modelo inicial e do valor dos juros, temos:

| Capital inicial – u.m. | Prazo   | Taxa de juros | Juros – u.m. |  |
|------------------------|---------|---------------|--------------|--|
| C                      | n       | i             | J            |  |
| 100,00                 | 3 meses | ?             | 33,10        |  |

| Formulário                               | $i = [(^3V1, 3310) - 1]100$ |
|------------------------------------------|-----------------------------|
| $i = [(^{n}V1+(J \div C)) -1]100$        | i = (1, 10 -1)100           |
| $i = [(^3v1+(33,10 \div 100,00)) -1]100$ | i = (0, 10)100              |
| $i = [(^3v1+(0,3310)) -1]100$            | i = 10,00% a.m. ↓           |

Na sequência, podemos estabelecer qual foi o prazo, com base nos juros gerados. Acompanhe:

| Capital inicial – u.m. | Prazo | Taxa de juros | Juros – u.m. |
|------------------------|-------|---------------|--------------|
|                        | n     | i             | J            |
| 100,00                 | ?     | 10,00% a.m.   | 33,10        |

| Formulário                                              |                                    |
|---------------------------------------------------------|------------------------------------|
| $n = log [(J \div C) + 1] \div log (1 + i)$             | $n = log (1,3310) \div log (1,10)$ |
| $n = log [(33,10 \div 100,00) + 1] \div log (1 + 0,10)$ | n = 0,12417806 ÷ 0,04139269        |
| n = log (0,3310 + 1) ÷ log (1,10)                       | n = 3 meses                        |

#### 2.4 Modelos para prática e fixação

Visto, através de um modelo apresentado acima, que podemos "rodar" as variáveis a partir de um dado inicial e, sempre retornar – confirmar – as mesmas, sugere-se a prática, através da resolução dos exercícios seguintes:

a) Um investidor aplicou parte dos seus recursos em um investimento por três quadrimestres e a taxa de juros que auferiu foi de 3,03010% a.t. O valor do investimento inicial foi de 500.000,00 u.m. Qual o valor dos juros ao final do prazo da aplicação? Após o cálculo dos juros, "rode" as variáveis, testando – fechando, confirmando - os valores informados inicialmente de cada uma delas.

A resolução passa, evidentemente, pelo ajuste de alguns dados do modelo. Acompanhe:

| Dados informados        | Dados ajustados   |  |
|-------------------------|-------------------|--|
| Prazo = 3 quadrimestres | = 1 ano           |  |
| Taxa = 3,03010 % a.t.   | = 12,682503% a.a. |  |

Por que disto? A unidade de tempo do prazo e da taxa de juros tem que ser a mesma. E, como o prazo da aplicação corresponde a um ano e os rendimentos serão pagos ao final deste prazo, a taxa de juros deverá estar expressa neste período, ano.

Agora, temos condições de encontrar o que se procura. Os juros auferidos.

| Capital inicial – u.m. | Prazo | Taxa de juros   | Juros – u.m. |
|------------------------|-------|-----------------|--------------|
| C                      | n     | i               | J            |
| 500.000,00             | 1 ano | 12,682503% a.a. | ?            |

| Formulário                                 |                                |
|--------------------------------------------|--------------------------------|
| $J = C[(1 + i)^n - 1]$                     | J = 500.000,00(1,12682503 - 1) |
| $J = 500.000,00[(1 + 0,12682503)^{1} - 1]$ | J = 500.000,00(0,12682503)     |
| $J = 500.000,00[(1,12682503)^{1} - 1]$     | J = 63.412,52 u.m.             |

Alternando a incógnita e procurando o capital, considerando o valor dos juros, temos:

| Capital inicial – u.m.                        | Prazo |                                  | Taxa de juros   | Juros – u.m. |   |
|-----------------------------------------------|-------|----------------------------------|-----------------|--------------|---|
| С                                             | n     |                                  | i               | J            |   |
| ?                                             | 1 ano |                                  | 12,682503% a.a. | 63.412,52    | 2 |
|                                               |       |                                  |                 |              |   |
| Formulário                                    |       |                                  |                 |              |   |
| $C = J \div (1 + i)^n - 1$                    |       | C = 63.412,52 ÷ (1,12682503 – 1) |                 |              |   |
| $C = 63.412,52 \div (1 + 0,12682503)^{1} - 1$ |       | C = 63.412,52 ÷ 0,12682503       |                 |              |   |
| $C = 63.412,52 \div (1,12682503)^{1} - 1$     |       | C = 500.000,00 u.m.              |                 |              |   |

Estabelecendo a taxa de juros, a partir do valor dos juros, temos:

| Capital inicial – u.m. | Prazo | Taxa de juros | Juros – u.m. |
|------------------------|-------|---------------|--------------|
|                        | n     | i             | J            |
| 500.000,00             | 1 ano | ?             | 63.412,52    |

| Formulário                                            |   | $i = [(^1 v1, 12682503) - 1]100$ |
|-------------------------------------------------------|---|----------------------------------|
| $i = [(^{n}V1+(J \div C)) -1]100$                     |   | i = (1,12682503 -1)100           |
| $i = [(^{1}v1 + (63.412,52 \div 500.000,00)) -1]100]$ |   | i = (0,12682503)100              |
| $i = [(^1v1+(0,12682503)) -1]100$                     | , | i = 12,682503% a.a. ▼            |

Estabelecendo o prazo, a partir do valor dos juros, temos:

| Capital inicial – u.m. | Prazo | Taxa de juros   | Juros – u.m. |
|------------------------|-------|-----------------|--------------|
|                        | n     | i               | J            |
| 500.000,00             | ?     | 12,682503% a.a. | 63.412,52    |

| Formulário                                                    |   |                                         |
|---------------------------------------------------------------|---|-----------------------------------------|
| $n = log [(J \div C) + 1] \div log (1 + i)$                   |   | n = log (1,12682504) ÷ log (1,12682503) |
| n = log [(63.412,52 ÷ 500.000,00) + 1] ÷ log (1 + 0,12682503) |   | n = 0,05185649 ÷ 0,05185649             |
| n = log (0,12682504 + 1) ÷ log (1,12682503)                   | , | n = 1 ano.                              |

b) Uma aplicação financeira foi feita pelo prazo de 99 dias. A taxa de juros, em regime exponencial foi de 0,50% a.m. Os juros auferidos ao final deste período foram de 829,75 u.m. Determine o capital aplicado. Após, "rode" todas as variáveis, confirmando o valor de cada uma do modelo inicial.

A resolução passa, evidentemente, pelo ajuste de alguns dados do modelo. Acompanhe:

| Dados informados   | Dados ajustados    |
|--------------------|--------------------|
| Prazo = 99 dias    | = 99 dias          |
| Taxa = 0,50 % a.m. | = 0,01662650% a.d. |

Por que disto? A unidade de tempo do prazo e da taxa de juros tem que ser a mesma. E, como o prazo da aplicação corresponde a 99 dias e os rendimentos serão pagos ao final deste prazo, a taxa de juros deverá estar expressa neste período, dias.

Agora, temos condições de encontrar o que se procura. O valor do capital, do investimento inicial.

| Capital inicial<br>– u.m.<br>C | Prazo<br>n | Taxa de juros<br>i | Juros – u.m.<br>J |
|--------------------------------|------------|--------------------|-------------------|
| ?                              | 99 dias    | 0,01662650% a.d.   | 829,75            |

| Formulário                                   |                                |
|----------------------------------------------|--------------------------------|
| $C = J \div (1 + i)^n - 1$                   | C = 829,75 ÷ (1,016595060 – 1) |
| $C = 829,75 \div (1 + 0,000166265)^{99} - 1$ | C = 829,75 ÷ 0,016595060       |
| $C = 829,75 \div (1,000166265)^{99} - 1$     | C = 50.000,00                  |

Estabelecendo a taxa de juros, considerando o valor dos juros, temos:

| Capital inicial – u.m. | Prazo   | Taxa de juros | Juros – u.m. |
|------------------------|---------|---------------|--------------|
| C                      | n       | i             | J            |
| 50.000,00              | 99 dias | ?             |              |

| Formulário                                        |   | i = [( <sup>99</sup> v1,016595) -1]100 |    |
|---------------------------------------------------|---|----------------------------------------|----|
| i = [("v1+(J ÷ C)) -1]100                         |   | i = (1,000166264 -1)100                |    |
| $i = [(^{99}V1 + (829,75 \div 50.000,00)) -1]100$ |   | i = (0,000166264)100                   |    |
| $i = [(^{99}V1+(0,016595)) -1]100$                | 7 | i = 0,0166264% a.d                     | ۱. |

Estabelecendo o prazo, a partir do valor dos juros, temos:

| Capital inicial – u.m. | Prazo | Taxa de juros  | Juros – u.m. |
|------------------------|-------|----------------|--------------|
| C                      | n     | i              | J            |
| 50.000,00              | ?     | 0,0166264% a.d | 829,75       |

| Formulário                                                       |                                        |
|------------------------------------------------------------------|----------------------------------------|
| $n = log [(J \div C) + 1] \div log (1 + i)$                      | n = log (1,016595) ÷ log (1,000166264) |
| $n = log[(829,75 \div 50.000,00) + 1] \div log(1 + 0,000166264)$ | n = 0,007148 ÷ 0,000072202             |
| $n = log (0,016595 + 1) \div log (1,000166264)$                  | n = 99 dias.                           |

c) Determinada operação de empréstimo para aquisição de bens duráveis, foi realizada por 720 dias. Os encargos foram pagos ao final da operação e importaram em 68.496,09 u.m. O valor do empréstimo foi de 375.000,00 u.m. Qual foi a taxa de juros anual desta operação? Após, "rode" todas as variáveis de forma a confirmar os dados iniciais do modelo dado.

A resolução passa, evidentemente, pelo ajuste de alguns dados do modelo. Acompanhe:

| Dados informados | Dados ajustados |  |  |
|------------------|-----------------|--|--|
| Prazo = 720 dias | = 2 anos        |  |  |
| Taxa = % a.a.    | = ? % a.a.      |  |  |

Por que disto? A unidade de tempo do prazo e da taxa de juros tem que ser a mesma. E, como o prazo da operação de empréstimo corresponde a 2 anos e os encargos foram pagos ao final deste prazo, ajustamos para ano todas as unidades de tempo.

Agora, temos condições de encontrar o que se procura. A taxa de juros do empréstimo.

| Capital inicial – u.m. | Prazo  | Taxa de juros | Juros – u.m. |
|------------------------|--------|---------------|--------------|
|                        | n      | i             | J            |
| 375.000,00             | 2 anos | ? % a.a.      | 68.496,09    |

| Formulário                                         |  | i = [( <sup>2</sup> v1,18265625) -1]100 |
|----------------------------------------------------|--|-----------------------------------------|
| $i = [(^{n}V1+(J \div C)) -1]100$                  |  | i = (1,0875 -1)100                      |
| $i = [(^2V1 + (68.496,09 \div 375.000,00)) -1]100$ |  | i = (0,0875)100                         |
| $i = [(^2V1 + (0,18265625)) -1]100$                |  | i = 8,75% a.a.                          |

Estabelecendo o prazo, considerando o valor dos juros, temos:

| Capital inicial – u.m. | Prazo | Taxa de juros | Juros – u.m. |
|------------------------|-------|---------------|--------------|
| C                      | n     | i             | J            |
| 375.000,00             | ?     | 8,75% a.a.    | 68.496,09    |

| Formulário                                                        |                                     |
|-------------------------------------------------------------------|-------------------------------------|
| $n = log [(J \div C) + 1] \div log (1 + i)$                       | n = log (1,18265624) ÷ log (1,0875) |
| $n = log [(68.496,09 \div 375.000,00) + 1] \div log (1 + 0,0875)$ | n = 0,07285853 ÷ 0,03642927         |
| n = log [(0,18265624) + 1] ÷ log (1,0875)                         | n = 2 anos.                         |

Estabelecendo o capital inicial – empréstimo -, considerando o valor dos juros, temos:

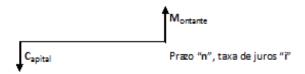
| Capital inicial – u.m. | Prazo  | Taxa de juros | Juros – u.m. |
|------------------------|--------|---------------|--------------|
|                        | n      | i             | J            |
| ?                      | 2 anos | 8,75% a.a.    | 68.496,09    |

| Formulário                              |                                  |
|-----------------------------------------|----------------------------------|
| $C = J \div (1 + i)^n - 1$              | C = 68.496,09 ÷ (1,18265625 – 1) |
| $C = 68.496,09 \div (1 + 0.0875)^2 - 1$ | C = 68.496,09 ÷ 0,18265625       |
| $C = 68.496,09 \div (1,0875)^2 - 1$     | C = 375.000,00 u.m.              |

#### 2.5 Montante

Entende-se como montante, o somatório de juros – ou encargos - e do capital inicial. Lembrando que os juros são frutos de um capital, prazo e taxa de juros. Assim, definimos montante como capital acrescido dos juros.

O princípio de que as unidades de tempo do prazo e da taxa de juros devem ser iguais, prevalece. A não observância deste princípio distorce e induz a erros dos valores e dados calculados e de interpretação dos mesmos.


Para o cálculo de montante, a calculadora financeira HP 12C é de extrema valia, nos auxiliando e agilizando os cálculos necessários.

#### 2.6 Equações algébricas – fórmulas

Para a resolução de situações de montante, podemos nos valer de algumas equações algébricas – fórmulas, conforme abaixo:

a) 
$$M = C + J$$
b)  $M = C(1 + i)^n$ 
c)  $C = M \div (1 + i)^n$ 
d)  $i = (^nVM \div C) \cdot 1$ 
e)  $n = log(M \div C) \div log(1 + i)$ 

#### 2.7 Interpretação gráfica



#### 2.8 Apresentação de modelo para cálculo

Inicialmente, vamos apresentar um modelo padrão para desenvolvimento dos cálculos. Nele, os valores do capital inicial, da taxa de juros e de prazo, são dados. Quer-se, inicialmente, estabelecer o valor do montante.

Após, tendo calculado o valor do montante, retornaremos ao modelo inicial e substituiremos cada variável, determinando-a e, assim, confirmando a exatidão do modelo, visto que os valores encontrados corresponderão ao dado inicial.

Por vezes, na dúvida quanto à exatidão dos valores encontrados, sugere-se a aplicação deste algoritmo para segurança e confiabilidade dos valores encontrados.

Os valores do modelo inicial são os do quadro 8, abaixo:

Quadro 8: modelo para cálculo inicial

| Capital inicial – u.m. | Prazo   | Taxa de juros | Montante – u.m. |
|------------------------|---------|---------------|-----------------|
|                        | n       | i             | M               |
| 100,00                 | 3 meses | 10,00% a.m.   | ?               |

A leitura do modelo é dada por: Dado um capital inicial de 100,00 u.m., aplicado por três meses, a uma taxa de juros de 10,00% a.m., qual o valor do montante, em u.m., ao final do período informado?

Retornando ao formulário e substituindo os dados do modelo, para o montante, temos:

| Formulário               |          |                    |   |
|--------------------------|----------|--------------------|---|
| $M = C(1 + i)^n$         |          | M = 100,00(1,3310) |   |
| $M = 100,00(1 + 0,10)^3$ |          |                    |   |
| $M = 100,00(1,10)^3$     | <b>/</b> | M = 133,10 u.m.    | , |

A calculadora HP 12C possui um algoritmo para o cálculo do valor do montante e, assim, fica fácil obtermos o valor do mesmo. Acompanhe:

| n | i  | PV       | PMT  | FV |
|---|----|----------|------|----|
| 3 | 10 | (100,00) | 0,00 | ?  |

Basta introduzir os valores em cada tecla e, na sequência, pressionar a que se deseja conhecer. No presente caso, o montante (FV).

| Dado | Tecla (pressionar) | Visor    |
|------|--------------------|----------|
| 3    | n                  | 3,00     |
| 10   | i                  | 10,00    |
| 100  | CHS PV             | (100,00) |
| 0    | PMT                | 0,00     |
|      | FV                 | 133,10   |

Observe que o valor do capital (PV) foi informado com sinal algébrico negativo. Já apresentamos as razões disto.

Agora, podemos "rodar" todas as variáveis e, sempre, retornar ao ponto inicial do modelo dado. Assim, manteremos fixos os dados do modelo, apenas mudando uma das variáveis.

Admita, então, que estamos procurando o capital que resultou no montante calculado acima.

| Capital inicial – u.m. | Prazo   | Taxa de juros | Montante- u.m. |
|------------------------|---------|---------------|----------------|
| C                      | n       | i             | M              |
| ?                      | 3 meses | 10,00% a.m.   |                |

Acompanhe o desenvolvimento dos cálculos, para definição do valor do capital inicial:

| Formulário                     |                       |
|--------------------------------|-----------------------|
| $C = M \div (1 + i)^n$         | C = 133,10 ÷ (1,3310) |
| $C = 133,10 \div (1 + 0,10)^3$ |                       |
| $C = 133,10 \div (1,10)^3$     | C = 100,00 u.m.       |

Com o uso da calculadora financeira HP 12C, temos:

| Dado   | Tecla (pressionar) | Visor    |
|--------|--------------------|----------|
| 3      | n                  | 3,00     |
| 10     | i                  | 10,00    |
| 133,10 | FV                 | 133,10   |
| 0      | PMT                | 0,00     |
|        | PV                 | (100,00) |

Para o cálculo da taxa de juros, assumindo os valores do modelo inicial e do valor do montante, temos:

| Capital inicial – u.m. | Prazo   | Taxa de juros | Montante – u.m. |
|------------------------|---------|---------------|-----------------|
|                        | n       | i             | M               |
| 100,00                 | 3 meses | ?             | 133,10          |

| Formulário                        |   |                   |   |
|-----------------------------------|---|-------------------|---|
| $i = (^{n}VM \div C) -1$          |   | i' = (1,10 -1)100 |   |
| $i' = (^3v133,10 \div 100,00) -1$ |   | i' = (0,10)100    |   |
| $i' = (^3v1,3310) -1$             | V | i = 10,00% a.m.   | • |

Com o uso da calculadora financeira HP 12C, temos:

| Dado   | Tecla (pressionar) | Visor    |
|--------|--------------------|----------|
| 3      | n                  | 3,00     |
| 100    | CHS PV             | (100,00) |
| 0      | PMT                | 0,00     |
| 133,10 | FV                 | 133,10   |
|        | i                  | 10,00    |

Na sequência, podemos estabelecer qual foi o prazo, com base no montante gerado. Acompanhe:

| Capital inicial – u.m. | Prazo | Taxa de juros | Montante – u.m. |
|------------------------|-------|---------------|-----------------|
|                        | n     | i             | M               |
| 100,00                 | ?     | 10,00% a.m.   | 133,10          |

| Formulário                                       |   |                        | _ |
|--------------------------------------------------|---|------------------------|---|
| $n = \log(M \div C) \div \log(1 + i)$            |   | n = 0,124178 ÷0,041393 |   |
| $n = log(133,10 \div 100,00) \div log(1 + 0,10)$ |   |                        |   |
| $n = log(1,3310) \div log(1,10)$                 | , | n = 3 meses.           |   |

Com o uso da calculadora financeira HP 12C, temos:

| Dado   | Tecla (pressionar) | Visor    |
|--------|--------------------|----------|
| 10     | i                  | 10,00    |
| 100    | CHS PV             | (100,00) |
| 0      | PMT                | 0,00     |
| 133,10 | FV                 | 133,10   |
|        | n                  | 3        |

#### 2.9 Modelos para prática e fixação

Visto, através de um modelo apresentado acima, que podemos "rodar" as variáveis a partir de um dado inicial e, sempre retornar – confirmar – as mesmas, sugere-se a prática, através da resolução dos exercícios seguintes:

a) Um investidor aplicou parte dos seus recursos em um investimento por dois semestres e a taxa de juros que auferiu foi de 4,060401% a.q. O valor do investimento inicial foi de 500.000,00 u.m. Qual o valor do montante ao final do prazo da aplicação? Após o cálculo do montante, "rode" as variáveis, testando – fechando, confirmando - os valores informados inicialmente de cada uma delas.

A resolução passa, evidentemente, pelo ajuste de alguns dados do modelo. Acompanhe:

| Dados informados       | Dados ajustados   |
|------------------------|-------------------|
| Prazo = 2 semestres    | = 1 ano           |
| Taxa = 4,060401 % a.q. | = 12,682503% a.a. |

Por que disto? A unidade de tempo do prazo e da taxa de juros tem que ser a mesma. E, como o prazo da aplicação corresponde a um ano e os rendimentos serão pagos ao final deste prazo, a taxa de juros deverá estar expressa neste período de tempo, ano.

Agora, temos condições de encontrar o que se procura. O montante auferido.

| Capital inicial – u.m. | Prazo | Taxa de juros   | Montante – u.m. |
|------------------------|-------|-----------------|-----------------|
| С                      | n     | i               | M               |
| 500.000,00             | 1 ano | 12,682503% a.a. | ?               |

| Formulário                           |   |                            |   |
|--------------------------------------|---|----------------------------|---|
| $M = C(1 + i)^n$                     |   | M = 500.000,00(1,12682503) |   |
| $M = 500.000,00(1 + 0,12682503)^{1}$ |   |                            |   |
| $M = 500.000,00(1,12682503)^{1}$     | , | M = 563.412,52 u.m.        | 7 |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor        |
|------------|--------------------|--------------|
| 1          | n                  | 1,00         |
| 12,682503  | i                  | 12,68        |
| 500.000,00 | CHS PV             | (500.000,00) |
| 0          | PMT                | 0,00         |
|            | FV                 | 563.412,52   |

Alternando a incógnita e procurando o capital, temos:

| Capital inicial – u.m. | Prazo | Taxa de juros   | Montante – u.m. |
|------------------------|-------|-----------------|-----------------|
|                        | n     | i               | M               |
| ?                      | 1 ano | 12,682503% a.a. | 563.412,52      |

| Formulário                                 |   |                               |   |
|--------------------------------------------|---|-------------------------------|---|
| $C = M \div (1 + i)^n$                     |   | C = 563.412,52 ÷ (1,12682503) |   |
| $C = 563.412,52 \div (1 + 0,12682503)^{1}$ |   |                               |   |
| $C = 563.412,52 \div (1,12682503)^1$       | , | C = 500.000,00 u.m.           | • |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor        |
|------------|--------------------|--------------|
| 1          | n                  | 1,00         |
| 12,682503  | i                  | 12,68        |
| 0          | PMT                | 0,00         |
| 563.412,52 | FV                 | 563.412,52   |
|            | PV                 | (500.000,00) |

Agora, definindo a taxa de juros, com base no montante:

| Formulário                                       |                          |
|--------------------------------------------------|--------------------------|
| i = ( <sup>n</sup> vM ÷ C) -1                    | i' = (1,12682503 -1) 100 |
| $i' = (^1\sqrt{563.412,52 \div 500.000,00}) - 1$ | i' = (0,12682503) 100    |
| i' = (¹√1,12682503) -1                           | i = 12,682503% a.a.      |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor          |  |
|------------|--------------------|----------------|--|
| 1          | n                  | 1,00           |  |
| 500.000,   | CHS PV             | (500.000,00)   |  |
| 0          | PMT                | 0,00           |  |
| 563.412,52 | FV                 | 563.412,52     |  |
|            | i                  | 12,682503 (f6) |  |

Calculando o prazo, com base no montante:

| Formulário                                                     |   |                         |   |
|----------------------------------------------------------------|---|-------------------------|---|
| $n = \log(M \div C) \div \log(1 + i)$                          |   | n = 0,051856 ÷ 0,051856 |   |
| $n = log(563.412,52 \div 500.000,00) \div log(1 + 0,12682503)$ |   |                         |   |
| $n = log(1,12682503) \div log(1,12682503)$                     | , | n = 1 ano.              | , |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor        |
|------------|--------------------|--------------|
| 12,682503  | i                  | 12,68        |
| 500.000,00 | CHS PV             | (500.000,00) |
| 0          | PMT                | 0,00         |
| 563.412,52 | FV                 | 563.412,52   |
|            | n                  | 1,00         |

b) Uma aplicação financeira foi feita pelo prazo de 99 dias. A taxa de juros, em regime exponencial foi de 0,50% a.m. Os juros auferidos ao final deste período foram de 829,75 u.m. e montante foi de 50.829,75 Determine o capital aplicado. Após, "rode" todas as variáveis, confirmando o valor de cada uma do modelo inicial.

A resolução passa, evidentemente, pelo ajuste de alguns dados do modelo. Acompanhe:

| Dados informados           | Dados ajustados    |
|----------------------------|--------------------|
| Prazo = 99 dias            | = 99 dias          |
| Taxa = 0,50 % a.m.         | = 0,01662650% a.d. |
| Montante = Capital + Juros | C = M - J          |
| M = C + J                  |                    |

Por que disto? A unidade de tempo do prazo e da taxa de juros tem que ser a mesma. E, como o prazo da aplicação corresponde a 99 dias e os rendimentos serão pagos ao final deste prazo, a taxa de juros deverá estar expressa neste período de tempo, dias.

Agora, temos condições de encontrar o que se procura. O valor do capital, do investimento inicial. Acompanhe:

| Capital inicial – u.m. | Prazo   | Taxa de juros    | Juros – u.m. | Montante  |
|------------------------|---------|------------------|--------------|-----------|
| C                      | n       | i                | J            | M         |
| ?                      | 99 dias | 0,01662650% a.d. | 829,75       | 50.829,75 |

Com os dados iniciais, já temos condições de apurar o capital inicial. Observe:

| Formulário |                        |  |
|------------|------------------------|--|
| M = C + J  | C = 50.829,75 - 829,75 |  |
| C = M - J  | C = 50.000,00 u.m.     |  |

Todavia, podemos calcular o que se pede, o capital, pela fórmula do montante. Acompanhe:

| $C = M \div (1 + i)^n$                       |   |                               |
|----------------------------------------------|---|-------------------------------|
| $C = 50.829,75 \div (1 + 0,0001662650)^{99}$ |   | C = 50.829,75 ÷ (1,016595060) |
| $C = 50.829,75 \div (1,0001662650)^{99}$     | , | C = 50.000,00 u.m.            |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor       |
|------------|--------------------|-------------|
| 99         | n                  | 99,00       |
| 0,01662650 | i                  | 0,02        |
| 0          | PMT                | 0,00        |
| 50.829,75  | FV                 | 50.829,75   |
|            | PV                 | (50.000,00) |

Tendo calculado o capital, podemos calcular a taxa de juros com base no montante.

| Capital inicial – u.m. | Prazo   | Taxa de juros | Montante  |
|------------------------|---------|---------------|-----------|
| C                      | n       | i             | M         |
| 50.000,00              | 99 dias | ? % a.m.      | 50.829,75 |

| Formulário                                 |                                     |
|--------------------------------------------|-------------------------------------|
| i = ( <sup>n</sup> √M ÷ C) -1              | i' = (1,00016626595 -1)             |
| $i' = (^{99}v50.829,75 \div 50.000,00) -1$ | i = 0,00016626(100)                 |
| i' = ( <sup>99</sup> √1,016595) -1         | i = 0,01662650% a.d. □ 0,50% a.m. ↓ |

Com o uso da calculadora financeira HP 12C, temos:

| Dado      | Tecla (pressionar) | Visor                       |  |
|-----------|--------------------|-----------------------------|--|
| 99        | n                  | 99,00                       |  |
| 50.000,00 | CHS PV             | (50.000,00)                 |  |
| 0         | PMT                | 0,00                        |  |
| 50.829,75 | FV                 | 50.829,75                   |  |
|           | i                  | 0,01662640 % a.d 0,50% a.m. |  |

Na sequência, podemos calcular o prazo da operação, considerando o montante.

| Capital inicial – u.m. | Prazo  | Taxa de juros    | Montante  |
|------------------------|--------|------------------|-----------|
| C                      | n      | i                | M         |
| 50.000,00              | ? dias | 0,01662650% a.d. | 50.829,75 |

| Formulário                                                     |   |                               |
|----------------------------------------------------------------|---|-------------------------------|
| $n = \log(M \div C) \div \log(1 + i)$                          |   | n = 0,007147969 ÷ 0,000072202 |
| $n = log(50.829,75 \div 50.000,00) \div log(1 + 0,0001662650)$ |   |                               |
| n = log(1,016595) ÷ log(1,0001662650)                          | , | n = 99 dias.                  |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor       |
|------------|--------------------|-------------|
| 0,01662640 | i                  | 0,02        |
| 50.000,00  | CHS PV             | (50.000,00) |
| 0          | PMT                | 0,00        |
| 50.829,75  | FV                 | 50.829,75   |
|            | n                  | 99 dias.    |

### E, qual foi o montante gerado?

| Capital inicial – u.m. | Prazo   | Taxa de juros                  | Montante |
|------------------------|---------|--------------------------------|----------|
| C                      | n       | i                              | M        |
| 50.000,00              | 99 dias | 0,50% a.m.<br>0,01662650% a.d. | ?        |

| Formulário                             |                            |   |
|----------------------------------------|----------------------------|---|
| $M = C(1 + i)^n$                       | M = 50.000,00(1,016595060) |   |
| $M = 50.000,00(1 + 0,0001662650)^{99}$ |                            |   |
| $M = 50.000,00(1,0001662650)^{99}$     | M = 50.829,75 u.m.         | , |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor          |
|------------|--------------------|----------------|
| 99         | n                  | 99,00          |
| 0,01662650 | i                  | 0,02           |
| 50.000,00  | CHS PV             | (50.000,00)    |
| 0          | PMT                | 0,00           |
|            | FV                 | 50.829,75 u.m. |

c) Determinada operação de empréstimo para aquisição de bens duráveis foi realizada por 720 dias. Os encargos foram pagos ao final da operação e importaram em 68.496,09 u.m. O valor do empréstimo foi de 375.000,00 u.m. Qual foi a taxa de juros anual desta operação? Após, "rode" todas as variáveis de forma a confirmar os dados iniciais do modelo dado.

A resolução passa, evidentemente, pelo ajuste de alguns dados do modelo. Acompanhe:

| Dados informados          | Dados ajustados            |
|---------------------------|----------------------------|
| Prazo = 720 dias          | = 2 anos                   |
| Montante: Capital + juros | Montante = 443.496,09 u.m. |
| Taxa = x % a.a.           | = ? % a.a.                 |

Por que disto? A unidade de tempo do prazo e da taxa de juros tem que ser a mesma. E, como o prazo da operação de empréstimo corresponde a 2 anos e os encargos foram pagos ao final deste prazo, ajustamos para ano todas as unidades de tempo.

Agora, temos condições de encontrar o que se procura. A taxa de juros do empréstimo.

| Capital inicial – u.m. | Prazo  | Taxa de juros   | Montante – u.m. |
|------------------------|--------|-----------------|-----------------|
| C                      | n      | i               | M               |
| 375.000,00             | 2 anos | <b>?</b> % a.a. |                 |

| Formulário                                 |          | i' = (1,0875 -1) |   |
|--------------------------------------------|----------|------------------|---|
| i = ( <sup>⊓</sup> vM ÷ C) -1              |          | i = (0,0875)100  |   |
| $i' = (^2 v443.496,09 \div 375.000,00) -1$ |          |                  |   |
| i' = (²√1,182656) -1                       | <b>\</b> | i = 8,75% a.a.   | + |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor        |
|------------|--------------------|--------------|
| 2          | n                  | 2,00         |
| 375.000,00 | CHS PV             | (375.000,00) |
| 0          | PMT                | 0,00         |
| 443.496,09 | FV                 | 443.496,09   |
|            | i                  | 8,75 % a.a.  |

Estabelecendo o prazo, a partir do montante, temos:

| Capital inicial – u.m. | Prazo  | Taxa de juros | Montante – u.m. |
|------------------------|--------|---------------|-----------------|
| C                      | n      | i             | M               |
| 375.000,00             | ? anos | 8,75 % a.a.   | 443.496,09      |

| Formulário                                                 |   |                             | 1                       |
|------------------------------------------------------------|---|-----------------------------|-------------------------|
| $n = \log(M \div C) \div \log(1 + i)$                      |   | n = 0,07285853 ÷ 0,03642927 |                         |
| $n = log(443.496,09 \div 375.000,00) \div log(1 + 0,0875)$ |   |                             |                         |
| $n = log(1,18265624) \div log(1,0875)$                     | , | n = 2 anos.                 | $\overline{\downarrow}$ |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor        |
|------------|--------------------|--------------|
| 8,75       | i                  | 8,75         |
| 375.000,00 | CHS PV             | (375.000,00) |
| 0          | PMT                | 0,00         |
| 443.496,09 | FV                 | 443.496,09   |
|            | n                  | 2 anos.      |

Estabelecendo o capital, a partir do montante, temos:

| Capital inicial – u.m. | Prazo  | Taxa de juros | Montante – u.m. |
|------------------------|--------|---------------|-----------------|
| C                      | n      | i             | M               |
| ?                      | 2 anos | 8,75 % a.a.   | 443.496,09      |

| Formulário                           |                            |          |
|--------------------------------------|----------------------------|----------|
| $C = M \div (1 + i)^n$               | C = 443.496,09 ÷ (1,182656 | 525)     |
| $C = 443.496,09 \div (1 + 0,0875)^2$ |                            |          |
| $C = 443.496,09 \div (1,0875)^2$     | C = 375.000,00 u.m.        | <b>\</b> |

Com o uso da calculadora financeira HP 12C, temos:

| Dado       | Tecla (pressionar) | Visor        |
|------------|--------------------|--------------|
| 2          | n                  | 2,00         |
| 8,75       | i                  | 8,75         |
| 0          | PMT                | 0,00         |
| 443.496,09 | FV                 | 443.496,09   |
|            | PV                 | (375.000,00) |

Pelos modelos apresentados, percebemos que os cálculos envolvendo juros compostos – exponenciais - e montante, não são tão complexos quando fazemos a devida interpretação gráfica ou, algébrica, e partimos para a sua resolução.

A maior dificuldade está no domínio e entendimento de taxas de juros equivalentes e a sua relação com as unidades de tempo do enunciado.

Também, é necessário o conhecimento, mesmo que básico, de radiciação, potenciação e logaritmo para a resolução de algumas incógnitas ou situações pontuais dos enunciados.

#### 3 AMORTIZAÇÃO DE CAPITAL

Neste tópico, serão apresentados dois dos diversos sistemas de amortização de capital. A opção pelos dois sistemas deve-se a uma questão prática. São os dois sistemas de amortização de capitais mais utilizados no sistema financeiro nacional.

Inicialmente, será apresentado o Sistema de Amortização Constante – SAC – ou método Hamburguês. Este sistema é o de uso corrente nas operações do Banco Nacional de Desenvolvimento Econômico e Social – BNDES e, também, em algumas operações do sistema de financiamento habitacional, capitaneada pela Caixa Econômica Federal – CEF.

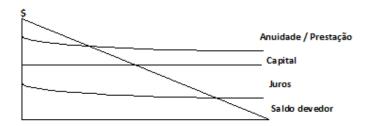
O outro, denominado de sistema francês de amortização – Tabela Price é o de ampla utilização pelo sistema financeiro nacional em suas operações ativas e passivas. O comércio e a indústria, em suas atividades de compra e venda a prazo, também o utilizam amplamente.

#### 3.1 Da premissa dos métodos

Amortização nos dá a ideia de pagamento, de retorno, de devolução de algo emprestado. Os empréstimos e financiamentos, em sua grande maioria, são devolvidos a longo prazo e englobam parcelas de capital e de encargos, os juros.

Essa distribuição entre capital e encargos, nas parcelas, em cada um dos dois sistemas de amortização de capital é bem distinta.

No sistema de amortização constante – SAC -, a parcela de capital é constante, fixa ao longo de todo o tempo do prazo contratual enquanto que o valor total dos desembolsos – a anuidade - é decrescente. Já, no sistema de amortização francês ou Price, as parcelas de capital são ascendentes enquanto o valor total dos desembolsos – as anuidades - é constante.


Apresentando cada sistema de amortização por vez, temos:

#### 3.2 Sistema de amortização de constante – SAC – Método Hamburguês

Conforme já discorrido, é amplamente utilizado pelo BNDES (FINAME) e CEF (Imobiliário). Surgiu no norte da Alemanha, em torno do século XV, na região do porto de Hamburgo. A sua concepção é bastante simples, pois parte do rateio – divisão - uniforme do valor do capital pelo prazo de amortização e, em cada parcela, são acrescidos os encargos financeiros do saldo devedor existente no ato do pagamento da mesma.

A calculadora financeira HP 12C não apresenta um algoritmo de cálculo para estabelecer os respectivos valores. Necessário, portanto, estabelecer os valores com a utilização de uma planilha, apurando os valores intermediários e plotando os mesmos nesta.

#### 3.3 Representação gráfica



Ao fazermos uma análise do comportamento de cada curva, verificamos que a relativa ao capital é uma reta, sendo, portanto, constante. Daí, o nome do método.

As curvas de juros e de anuidade/prestação são declinantes. Lembrando que a curva de anuidade é a somatória da curva (reta) de capital e de juros.

O saldo devedor, que é o valor do empréstimo (capital inicial) apresenta-se como uma reta, zerando o seu valor junto à última parcela – prazo -.

#### 3.4 Fórmulas de cálculo

| K         | n                      | J     | PMT        | SD      |
|-----------|------------------------|-------|------------|---------|
| Capital,  | Número de amortizações | Juros | Anuidade,  | Saldo   |
| principal | no período.            |       | prestação. | devedor |

#### 3.5 Modelo básico para cálculo

Admita que certo empréstimo fosse concedido nas seguintes condições: Prazo do empréstimo: Cinco anos; amortizações anuais, encargos de 10,00% a.a., valor do empréstimo de 100.000,00 u.m., anuidades postecipadas, sem carência.

Antes da elaboração da planilha de amortização do empréstimo, porém, cabem alguns ajustes:

| Enunciado     | Ajustes                          |
|---------------|----------------------------------|
| Prazo: 5 anos | Amortizações anuais: 5 anuidades |

Feitos os ajustes, elabora-se a planilha, conforme abaixo:

| Prazo | Capital    | Juros     | Prestação  | Saldo devedor |
|-------|------------|-----------|------------|---------------|
| "n"   | K          | J         | PMT        | SD            |
| 0     | -          | -         | -          | 100.000,00    |
| 1     | 20.000,00  | 10.000,00 | 30.000,00  | 80.000,00     |
| 2     | 20.000,00  | 8.000,00  | 28.000,00  | 60.000,00     |
| 3     | 20.000,00  | 6.000,00  | 26.000,00  | 40.000,00     |
| 4     | 20.000,00  | 4.000,0   | 24.000,00  | 20.000,00     |
| 5     | 20.000,00  | 2.000,00  | 22.000,00  | 0,00          |
| Σ     | 100.000,00 | 30.000,00 | 130.000,00 |               |

Observe, agora, o comportamento de cada variável (K,J,PMT e SD) com o gráfico teórico apresentado a pouco, em 3.3.

Ainda, para melhor entendimento de como foram extraídos cada um dos valores da planilha acima, acompanhe:

#### Para capital - K:

| K                        | PV         | n | K = PV ÷ n |
|--------------------------|------------|---|------------|
| K <sub>1,2,3,4,5</sub> . | 100.000,00 | 5 | 20.000,00  |

### Para Juros – J:

Para n = 1, temos:

| $J_n = SD_{n-1} . i'$   |                                |
|-------------------------|--------------------------------|
| $J_1 = SD_{1-1} . 0,10$ | $J_1 = 100.000,00(0,10)$       |
| $J_1 = SD_0 . 0,10$     | $J_1 = 10.000,00 \text{ u.m.}$ |

| Juros do período<br>"n" | SD         | i′   | $J_n = SD_{n-1} . i'$ |
|-------------------------|------------|------|-----------------------|
| $J_0$                   | -          | -    | -                     |
| J <sub>1</sub>          | 100.000,00 | 0,10 | 10.000,00             |
| $J_2$                   | 80.000,00  | 0,10 | 8.000,00              |
| $J_3$                   | 60.000,00  | 0,10 | 6.000,00              |
| $J_4$                   | 40.000,00  | 0,10 | 4.000,00              |
| $J_5$                   | 20.000,00  | 0,10 | 2.000,00              |

#### Para anuidade - PMT:

Para n = 1, temos:

| $PMT_n = K_n + J_n$  | PMT <sub>1</sub> = 20.000,00 + 10.000,00 |  |
|----------------------|------------------------------------------|--|
| $PMT_1 = K_1  + J_1$ | PMT <sub>1</sub> = 30.000,00 u.m.        |  |

| PMT<br>"n"       | К         | J         | $PMT_n = K_n + J_n$ |
|------------------|-----------|-----------|---------------------|
| PMT <sub>0</sub> | -         | -         | -                   |
| PMT <sub>1</sub> | 20.000,00 | 10.000,00 | 30.000,00           |
| PMT <sub>2</sub> | 20.000,00 | 8.000,00  | 28.000,00           |
| PMT <sub>3</sub> | 20.000,00 | 6.000,00  | 26.000,00           |
| PMT <sub>4</sub> | 20.000,00 | 4.000,00  | 24.000,00           |
| PMT <sub>5</sub> | 20.000,00 | 2.000,00  | 22.000,00           |

#### Para saldo devedor - SD:

Para n = 1, temos:

| $SD_n = SD_{n-1} - K_n$ |                                  |
|-------------------------|----------------------------------|
| $SD_1 = SD_{1-1} - K_1$ | $SD_1 = 100.000,00 - 20.000,00$  |
| $SD_1 = SD_0 - K_1$     | SD <sub>1</sub> = 80.000,00 u.m. |

| SD<br>""        | К         | $SD_n = SD_{n-1} - K_n$ |
|-----------------|-----------|-------------------------|
| "n"             |           |                         |
| $SD_0$          | -         | 100.000,00              |
| SD <sub>1</sub> | 20.000,00 | 80.000,00               |
| $SD_2$          | 20.000,00 | 60.000,00               |
| SD <sub>3</sub> | 20.000,00 | 40.000,00               |
| SD <sub>4</sub> | 20.000,00 | 20.000,00               |
| SD <sub>5</sub> | 20.000,00 | 0,00                    |

Se observarmos, veremos que o cálculo dos juros é decrescente em um valor fixo, como também, do valor da anuidade e do saldo devedor.

Assim, tendo calculado dois períodos de juros, podemos calcular o valor de juros das demais parcelas pela diferença das duas primeiras. Isto ocorre, porque o sistema de amortização constante segue uma progressão aritmética, sendo os juros a razão da P.A.

#### 3.6 Modelos para prática e fixação

Tendo sido explorado um modelo de forma bem detalhada, apresenta-se outros três para fixação.

a) Um agricultor ao contratar uma operação de financiamento de um implemento agrícola o fez nas seguintes condições: Valor do implemento: 650.000,00 u.m.; entrada com recursos próprios de 45% do valor do implemento; prazo do financiamento 1080 dias, juros semestrais de 5%. As amortizações são semestrais, sem carência, anuidades postecipadas. Elabore a planilha de pagamento com base no sistema de amortização constante.

Antes da elaboração da planilha de amortização do empréstimo, porém, cabem alguns ajustes:

| Enunciado                                | Ajustes                                 |  |
|------------------------------------------|-----------------------------------------|--|
| Prazo: 1080 dias = 3 anos                | Amortizações semestrais: 6 anuidades    |  |
| Valor do financiamento: 650.000,00(0,55) | Valor do financiamento: 357.500,00 u.m. |  |
| Encargos: Semestrais                     | Encargos: 5% a.s.                       |  |

Feitos os ajustes, elabora-se a planilha, conforme abaixo:

| Prazo | Capital    | Juros     | Prestação  | Saldo devedor |
|-------|------------|-----------|------------|---------------|
| "n"   | K          | J         | PMT        | SD            |
| 0     | -          | -         | -          | 357.500,00    |
| 1     | 59.583,33  | 17.875,00 | 77.458,33  | 297.916,67    |
| 2     | 59.583,33  | 14.895,83 | 74.479,16  | 238.333,34    |
| 3     | 59.583,33  | 11.916,67 | 71.500,00  | 178.750,01    |
| 4     | 59.583,33  | 8.937,50  | 68.520,83  | 119.166,68    |
| 5     | 59.583,33  | 5.958,33  | 65.541,66  | 59.583,35     |
| 6     | 59.583,35  | 2.979,17  | 62.562,50  | 0,00          |
| Σ     | 357.500,00 | 62.562,50 | 420.062.50 |               |

b) Uma concessionária de caminhões fez uma proposta de venda a um cliente, ofertando uma linha de financiamento com as seguintes condições: Valor do caminhão: 400.000,00 u.m., prazo para pagamento de três semestres, amortizações a cada 1/4 de ano, custo financeiro final de 3% a.t., sem carência e anuidades postecipadas. Apresente a planilha de amortização com base no sistema de amortização constante.

Antes da elaboração da planilha de amortização do empréstimo, porém, cabem alguns ajustes:

| Enunciado                     | Ajustes                             |
|-------------------------------|-------------------------------------|
| Prazo: 3 semestres = 18 meses | Amortizações 1/4 ano = 6 trimestres |

Feitos os ajustes, elabora-se a planilha, conforme abaixo:

| Prazo | Capital    | Juros     | Prestação  | Saldo devedor |
|-------|------------|-----------|------------|---------------|
| "n"   | K          | J         | PMT        | SD            |
| 0     | -          | -         | -          | 400.000,00    |
| 1     | 66.666,67  | 12.000,00 | 78.666,67  | 333.333,33    |
| 2     | 66.666,67  | 10.000,00 | 76.666,67  | 266.666,67    |
| 3     | 66.666,67  | 8.000,00  | 74.666,67  | 200.000,00    |
| 4     | 66.666,67  | 6.000,00  | 72.666,67  | 133.333,33    |
| 5     | 66.666,67  | 4.000,00  | 70.666,67  | 66.666,67     |
| 6     | 66.666,65  | 2.000,00  | 68.666,67  | 0,00          |
| Σ     | 400.000,00 | 42.000,00 | 442.000,00 |               |

c) Considere que um bem móvel qualquer foi financiado por nove quadrimestres, com amortizações a cada ½ ano. Os encargos semestrais contratados foram de 4,5%, sem carência, anuidades postecipadas. O valor dos bens financiados foi de 150.000,00 u.m. Elabore a planilha de amortização deste financiamento com base no sistema de amortização constante.

Antes da elaboração da planilha de amortização do empréstimo, porém, cabem alguns ajustes:

| Enunciado                       | Ajustes                            |
|---------------------------------|------------------------------------|
| Prazo: 9 quadrimestres = 3 anos | Amortizações 1/2 ano = 6 semestres |

Feitos os ajustes, elabora-se a planilha, conforme abaixo:

| Prazo | Capital    | Juros     | Prestação  | Saldo devedor |
|-------|------------|-----------|------------|---------------|
| "n"   | K          | J         | PMT        | SD            |
| 0     | -          | -         | -          | 150.000,00    |
| 1     | 25.000,00  | 6.750,00  | 31.750,00  | 125.000,00    |
| 2     | 25.000,00  | 5.625,00  | 30.625,00  | 100.000,00    |
| 3     | 25.000,00  | 4.500,00  | 29.500,00  | 75.000,00     |
| 4     | 25.000,00  | 3.375,00  | 28.375,00  | 50.000,00     |
| 5     | 25.000,00  | 2.250,00  | 27.250,00  | 25.000,00     |
| 6     | 25.000,00  | 1.125,00  | 26.125,00  | 0,00          |
| Σ     | 150.000,00 | 23.625,00 | 173.625,00 |               |

Aqui, vamos "abrir" o cálculo para cada variável, para sedimentar o assunto. Acompanhe:

# Para capital – K:

| K                          | PV         | n | K = PV ÷ n |
|----------------------------|------------|---|------------|
| K <sub>1,2,3,4,5,6</sub> . | 150.000,00 | 6 | 25.000,00  |

### Para Juros – J:

Para n = 1, temos:

| $J_n = SD_{n-1} \cdot i'$ |                                |
|---------------------------|--------------------------------|
| $J_1 = SD_{1-1} . 0.045$  | $J_1 = 150.000,00(0,045)$      |
| $J_1 = SD_0 \cdot 0.0045$ | J <sub>1</sub> = 6.750,00 u.m. |

| Juros do período<br>"n" | SD         | i′    | $J_n = SD_{n-1} . i'$ |
|-------------------------|------------|-------|-----------------------|
| $J_0$                   | -          | -     | -                     |
| J <sub>1</sub>          | 150.000,00 | 0,045 | 6.750,00              |
| J <sub>2</sub>          | 125.000,00 | 0,045 | 5.625,00              |
| J <sub>3</sub>          | 100.000,00 | 0,045 | 4.500,00              |
| J <sub>4</sub>          | 75.000,00  | 0,045 | 3.375,00              |
| J <sub>5</sub>          | 50.000,00  | 0,045 | 2.250,00              |
| J <sub>6</sub>          | 25.000,00  | 0,045 | 1.125,00              |

### Para anuidade – PMT:

Para n = 1, temos:

| $PMT_n = K_n + J_n$ | PMT <sub>1</sub> = 25.000,00 + 6.750,00 |
|---------------------|-----------------------------------------|
| $PMT_1 = K_1 + J_1$ | PMT <sub>1</sub> = 31.750,00 u.m.       |

| PMT              | K         | J        | $PMT_n = K_n + J_n$ |
|------------------|-----------|----------|---------------------|
| "n"              |           |          |                     |
| $PMT_0$          | -         | -        | -                   |
| PMT <sub>1</sub> | 25.000,00 | 6.750,00 | 31.750,00           |
| PMT <sub>2</sub> | 25.000,00 | 5.625,00 | 30.625,00           |
| PMT <sub>3</sub> | 25.000,00 | 4.500,00 | 29.500,00           |
| PMT <sub>4</sub> | 25.000,00 | 3.375,00 | 28.375,00           |
| PMT <sub>5</sub> | 25.000,00 | 2.250,00 | 27.250,00           |
| PMT <sub>6</sub> | 25.000,00 | 1.125,00 | 26.125,00           |

#### Para saldo devedor - SD:

Para n = 1, temos:

| $SD_n = SD_{n-1} - K_n$ |                                          |
|-------------------------|------------------------------------------|
| $SD_1 = SD_{1-1} - K_1$ | SD <sub>1</sub> = 150.000,00 – 25.000,00 |
| $SD_1 = SD_0 - K_1$     | SD <sub>1</sub> = 125.000,00 u.m.        |

| SD<br>"n"       | К         | $SD_n = SD_{n-1} - K_n$ |
|-----------------|-----------|-------------------------|
| SD <sub>0</sub> | -         | 150.000,00              |
| SD <sub>1</sub> | 25.000,00 | 125.000,00              |
| SD <sub>2</sub> | 25.000,00 | 100.000,00              |
| SD <sub>3</sub> | 25.000,00 | 75.000,00               |
| SD <sub>4</sub> | 25.000,00 | 50.000,00               |
| SD <sub>5</sub> | 25.000,00 | 25.000,00               |
| SD <sub>6</sub> | 25.000,00 | 0,00                    |

#### 3.7 Com carência

Por vezes, há a previsão contratual de carência nos contratos de empréstimos e de financiamentos. Aqui, carência, é no sentido relativo ao capital. Entretanto, em situações muito particulares, também há a concessão de carência para os juros. Todavia, por estes representarem os ganhos do banqueiro, a sua concessão encontra resistências bem amplas por parte destes.

Carência deve ser compreendida como um lapso temporal em que não há a amortização de capital, apenas dos juros. Nos empreendimentos de longa maturação ou em fase de implantação não é rara tal situação. Sua concessão é parte da negociação geral das condições do empréstimo ou financiamento entre as partes.

Ainda, carência é um período de tempo maior do que o intervalo de tempo entre o pagamento das anuidades. Por exemplo: Em um contrato de cinco anos, o credor concede uma carência de dois anos e, após este prazo, as amortizações deverão ocorrer a cada período de ano. Logo, a carência, neste modelo, dois anos é maior que o intervalo de tempo entre cada uma das anuidades, ano.

Neste período de carência os encargos, os juros, são exigidos normalmente ficando apenas, o valor do principal, sem amortização.

O algoritmo de cálculo é semelhante ao apresentado anteriormente. Apenas, que o prazo do financiamento e de amortização é que devem ser ajustados para o cálculo da anuidade relativo à amortização de capital.

Para exemplificar, acompanhe o modelo a seguir:

Um empréstimo no valor de 75.000,00 u.m. deverá ser pago em um ano. Os encargos financeiros são de 3% a.t. As amortizações, após a carência, deverão ser a cada 90 dias. A carência concedida foi de ¼ de ano. Elabore a planilha de amortização com base no sistema de amortização constante.

Antes da elaboração da planilha de amortização do empréstimo, porém, cabem alguns ajustes:

| Enunciado               | Ajustes                                      |
|-------------------------|----------------------------------------------|
| Prazo: 1 ano = 12 meses | Amortizações a cada 90 dias: 4 anuidades (1  |
|                         | de carência + 3 para amortizar) trimestrais. |
| Carência: ¼ de ano      | Carência = 1 trimestre                       |
| Encargos: trimestrais   | Encargos = 3% a.t.                           |

Feitos os ajustes, elabora-se a planilha, conforme abaixo:

Planilha V

| Prazo | Capital   | Juros    | Prestação | Saldo devedor |
|-------|-----------|----------|-----------|---------------|
| "n"   | K         | J        | PMT       | SD            |
| 0     | -         | -        | -         | 75.000,00     |
| 1     | 0,00      | 2.250,00 | 2.250,00  | 75.000,00     |
| 2     | 25.000,00 | 2.250,00 | 27.250,00 | 50.000,00     |
| 3     | 25.000,00 | 1.500,00 | 26.500,00 | 25.000,00     |
| 4     | 25.000,00 | 750,00   | 25.750,00 | 0,00          |
| Σ     | 75.000,00 | 6.750,00 | 81.750,00 |               |

Observe, agora, o comportamento de cada variável (K,J,PMT e SD) com o gráfico teórico apresentado a pouco, em 3.3. Nada mudou em relação ao modelo anterior, em função da carência.

Ainda, para melhor entendimento de como foram extraídos cada um dos valores da planilha acima, acompanhe:

Para capital – K:

| K                   | PV        | n | K = PV ÷ n |
|---------------------|-----------|---|------------|
| K <sub>1,2,3.</sub> | 75.000,00 | 3 | 25.000,00  |

Cuidado. O "n", aqui, é o prazo, o número de amortizações após a carência. Lembre-se que o "n" inicial, o do prazo é de 4 trimestres (amortizações a cada 90 dias). Porém, como há carência de um trimestre resta, para amortizar, apenas 3 trimestres. (Prazo do contrato = 4 trimestres, menos um trimestre de carência ficam, ainda, 3 trimestres para amortizar a dívida).

**Para Juros – J**: Para n = 1, temos:

| $J_n = SD_{n-1} . i'$   |                                |
|-------------------------|--------------------------------|
| $J_1 = SD_{1-1} . 0.03$ | $J_1 = 75.000,00(0,03)$        |
| $J_1 = SD_0 . 0.03$     | J <sub>1</sub> = 2.250,00 u.m. |

| Juros do período<br>"n" | SD        | i′   | $J_n = SD_{n-1} \cdot i'$ |  |
|-------------------------|-----------|------|---------------------------|--|
| J <sub>0</sub>          | -         | -    | -                         |  |
| J <sub>1</sub>          | 75.000,00 | 0,03 | 2.250,00                  |  |
| J <sub>2</sub>          | 75.000,00 | 0,03 | 2.250,00                  |  |
| $J_3$                   | 50.000,00 | 0,03 | 1.500,00                  |  |
| J <sub>4</sub>          | 25.000,00 | 0,03 | 750,00                    |  |

#### Para anuidade - PMT:

Para n = 1, temos:

| $PMT_n = K_n + J_n$ | PMT <sub>1</sub> = 0,00 + 2.250,00 |
|---------------------|------------------------------------|
| $PMT_1 = K_1 + J_1$ | PMT <sub>1</sub> = 2.250,00 u.m.   |

| PMT<br>"n"       | К         | J        | $PMT_n = K_n + J_n$ |
|------------------|-----------|----------|---------------------|
| PMT <sub>0</sub> | -         | -        | -                   |
| PMT <sub>1</sub> | 0,00      | 2.250,00 | 2.250,00            |
| PMT <sub>2</sub> | 25.000,00 | 2.250,00 | 27.250,00           |
| PMT <sub>3</sub> | 25.000,00 | 1.500,00 | 26.500,00           |
| PMT <sub>4</sub> | 25.000,00 | 750,00   | 25.750,00           |

#### Para saldo devedor - SD:

Para n = 1, temos:

| $SD_n = SD_{n-1} - K_n$ |                                  |
|-------------------------|----------------------------------|
| $SD_1 = SD_{1-1} - K_1$ | $SD_1 = 75.000,00 - 0,00$        |
| $SD_1 = SD_0 - K_1$     | SD <sub>1</sub> = 75.000,00 u.m. |

| SD              | K         | $SD_n = SD_{n-1} - K_n$ |
|-----------------|-----------|-------------------------|
| "n"             |           |                         |
| SD <sub>0</sub> | -         | 75.000,00               |
| SD <sub>1</sub> | 0,00      | 75.000,00               |
| SD <sub>2</sub> | 25.000,00 | 50.000,00               |
| $SD_3$          | 25.000,00 | 25.000,00               |
| SD <sub>4</sub> | 25.000,00 | 0,00                    |

### 3.8 Modelos para prática e fixação

**a)** Um banco, ao financiar a aquisição de bens duráveis, o fez nas seguintes condições: Valor do financiamento igual a 225.000,00 u.m., prazo do contrato de 10 semestres, amortizações anuais, encargos de 7,50% a.a. A carência concedida foi de 3/5 do prazo do contrato. Elabore a planilha de amortização considerando o sistema de amortização constante.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                    | Ajustes                                   |  |
|------------------------------|-------------------------------------------|--|
| Prazo: 10 semestres = 5 anos | Amortizações anuais: 5 amortizações (3 de |  |
|                              | carência + 2 para amortizar).             |  |
| Carência: 3/5 de 5 anos      | Carência = 3 anos                         |  |
| Encargos: anuais             | Encargos = 7,50% a.a.                     |  |

Feitos os ajustes, elabora-se a planilha, conforme abaixo:

| Prazo | Capital    | Juros     | Prestação  | Saldo devedor |
|-------|------------|-----------|------------|---------------|
| "n"   | K          | J         | PMT        | SD            |
| 0     | -          | -         | -          | 225.000,00    |
| 1     | 0,00       | 16.875,00 | 16.875,00  | 225.000,00    |
| 2     | 0,00       | 16.875,00 | 16.875,00  | 225.000,00    |
| 3     | 0,00       | 16.875,00 | 16.875,00  | 225.000,00    |
| 4     | 112.500,00 | 16.875,00 | 129.375,00 | 112.500,00    |
| 5     | 112.500,00 | 8.437,50  | 120.937,50 | 0,00          |
| Σ     | 225.000,00 | 75.937,50 | 300.937,50 |               |

b) Um empresário adquiriu um equipamento e, não tendo o capital todo, financiou 70% do valor do mesmo. O valor do equipamento adquirido custou 142.857,14 u.m. A linha de crédito liberado pelo agente financeiro compreendia um prazo total de 8 trimestres e encargos financeiros de 3% ao trimestre. A carência ajustada foi de ¼ do prazo do financiamento, sendo que as amortizações serão trimestrais. Elabore a planilha de amortização considerando o sistema de amortização constante.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                                       | Ajustes                                     |  |
|-------------------------------------------------|---------------------------------------------|--|
| Prazo: 8 trimestres = 2 anos                    | Amortizações trimestrais: 8 amortizações (2 |  |
|                                                 | de carência + 6 para amortizar).            |  |
| Carência: 1/4 de 2 anos                         | Carência = 0,5 ano = 2 trimestres           |  |
| Encargos: trimestrais                           | Encargos = 3,0% a.t.                        |  |
| Valor do financiamento = 70% de 142.857,14 u.m. | Valor financiado = 100.000,00 u.m.          |  |

Feitos os ajustes, elabora-se a planilha, conforme abaixo:

| Prazo | Capital    | Juros     | Prestação  | Saldo devedor |
|-------|------------|-----------|------------|---------------|
| "n"   | K          | J         | PMT        | SD            |
| 0     | -          | -         | -          | 100.000,00    |
| 1     | 0,00       | 3.000,00  | 3.000,00   | 100.000,00    |
| 2     | 0,00       | 3.000,00  | 3.000,00   | 100.000,00    |
| 3     | 16.666,67  | 3.000,00  | 19.666,67  | 83.333,33     |
| 4     | 16.666,67  | 2.500,00  | 19.166,67  | 66.666,67     |
| 5     | 16.666,67  | 2.000,00  | 18.666,67  | 50.000,00     |
| 6     | 16.666,67  | 1.500,00  | 18.166,67  | 33.333,33     |
| 7     | 16.666,67  | 1.000,00  | 17.666,67  | 16.666,67     |
| 8     | 16.666,65  | 500,00    | 17.166,65  | 0,00          |
| Σ     | 100.000,00 | 16.500,00 | 116.500,00 |               |

c) Um agricultor, ao pleitear uma linha de crédito para equipamentos de irrigação no valor de 30.000,00 u.m., obteve do agente financeiro as seguintes informações: Valor da linha de crédito de 2/3 do valor pleiteado, prazo total para quitação de 18 bimestres, encargos semestrais de 3,00%. A carência é de 6 quadrimestres e as amortizações a cada ½ ano. Elabore a planilha de amortização considerando o sistema de amortização constante.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                                     | Ajustes                                  |
|-----------------------------------------------|------------------------------------------|
| Prazo: 18 bimestres = 3 anos                  | Amortizações ½ ano: 6 amortizações (4 de |
|                                               | carência + 2 para amortizar).            |
| Carência: 6 quadrimestres = 2 anos            | Carência = 4 semestres                   |
| Encargos: semestrais                          | Encargos = 3,00% a.s.                    |
| Valor do financiamento = 2/3 de 30.00,00 u.m. | Valor financiado = 20.000,00 u.m.        |

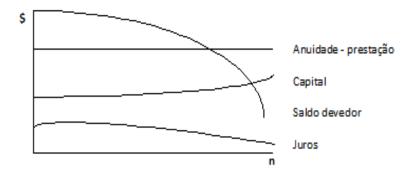
Feitos os ajustes, elabora-se a planilha, conforme abaixo:

| Prazo | Capital   | Juros    | Prestação | Saldo devedor |
|-------|-----------|----------|-----------|---------------|
| "n"   | K         | J        | PMT       | SD            |
| 0     | -         | -        | -         | 20.000,00     |
| 1     | 0,00      | 600,00   | 600,00    | 20.000,00     |
| 2     | 0,00      | 600,00   | 600,00    | 20.000,00     |
| 3     | 0,00      | 600,00   | 600,00    | 20.000,00     |
| 4     | 0,00      | 600,00   | 600,00    | 20.000,00     |
| 5     | 10.000,00 | 600,00   | 10.600,00 | 10.000,00     |
| 6     | 10.000,00 | 300,00   | 10.300,00 | 0,00          |
| Σ     | 20.000,00 | 3.300,00 | 23.300,00 |               |

A atenção e cuidado especial, quando se tem carência, é quanto ao correto enquadramento em relação ao prazo do contrato (que é o prazo total para a amortização da dívida) e o prazo de carência (período em que não há amortização de capital).

Verificado o prazo total e identificado o período de carência, a diferença entre ambos é o período para amortização do capital. E, este prazo é o que deverá ser considerado para o cálculo do valor da amortização.

#### 4 SISTEMA FRANCÊS DE AMORTIZAÇÃO – TABELA PRICE


Enquanto que no sistema de amortização constante – SAC -, tratado no tópico anterior, usava-se conceitos de juros simples aqui, em sistema francês de amortização – Price – utilizaremos conceitos de juros compostos – exponenciais.

Este sistema é de largo uso pelas instituições financeiras em suas linhas de ativos (empréstimos, financiamentos, ECC, cheque especial, leasing) e, pela indústria e comércio, em suas operações de vendas a prazo.

Uma característica deste sistema é que as anuidades – prestações – são todas iguais. E, anuidade, engloba retorno de capital e de juros.

A calculadora financeira HP 12C possui um algoritmo de cálculo que nos possibilita a obtenção de dados de forma direta, sem maiores dificuldades.

#### 4.1 Representação gráfica



#### 4.2 Fórmulas de cálculo

#### 4.3 Modelo básico para cálculo

Na aquisição de um veículo, um representante comercial valeu-se de uma linha de financiamento da fábrica. As condições gerais do financiamento foram às seguintes: Valor do veículo 75.000,00 u.m., prazo do financiamento de cinco anos, com pagamentos anuais. Os encargos mensais foram de 0,99%, sem carência e anuidades postecipadas. Qual foi o valor das parcelas contratadas? Elabore a planilha de amortização com base no sistema francês de amortização – Price.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado            | Ajuste                              |
|----------------------|-------------------------------------|
| Prazo: 5 anos        | Amortizações anuais: 5 amortizações |
| Encargos: 0,99% a.m. | Encargos: 12,548696% a.a.           |

Estabelecendo o valor da anuidade, temos:

| $PMT = PV[i(1+i)^n \div (1+i)^n -1]$                                   |                            |
|------------------------------------------------------------------------|----------------------------|
| $PMT = 75.000,00[0,12548696(1 + 0,12548696)^{5} \div (1 +$             | PMT = 75.000,00(0,226621 ÷ |
| 0,12548696) <sup>5</sup> -1]                                           | 0,805936)                  |
| $PMT = 75.000,00[0,12548696(1,12548696)^{5} \div (1,12548696)^{5} -1]$ | PMT = 75.000,00(0,281190)  |
| $PMT = 75.000,00[0,12548696(1,805936) \div (1,805936 - 1)]$            | PMT = 21.089,28 u.m.       |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar no modo postecipado):

| n | i         | PV          | FV   | PMT ?     |
|---|-----------|-------------|------|-----------|
| 5 | 12,548696 | (75.000,00) | 0,00 | 21.089,28 |

Executando o cálculo, com a calculadora, passo a passo:

| Digitar   | Pressionar | Visualização |
|-----------|------------|--------------|
| 5         | n          | 5,00         |
| 12,548696 | i          | 12,55        |
| 75.000,00 | CHS PV     | (75.000,00)  |
| 0         | FV         | 0,00         |
|           | PMT        | 21.089,28    |

A planilha de amortização, similar a do modelo anterior, SAC, poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

| Prazo              | Anuidade   | Juros     | Capital   | Saldo devedor |
|--------------------|------------|-----------|-----------|---------------|
| "n"                | "PMT"      | "J"       | "PV"      | "SD"          |
| TECLA A PRESSIONAR | Vide acima | 1 f AMORT | x < > y   | RCL PV        |
| 0                  | -          | -         | -         | 75.000,00     |
| 1                  | 21.089,28  | 9.411,52  | 11.677,76 | 63.322,24     |
| 2                  | 21.089,28  | 7.946,12  | 13.143,16 | 50.179,08     |
| 3                  | 21.089,28  | 6.296,82  | 14.792,46 | 35.386,62     |
| 4                  | 21.089,28  | 4.440,56  | 16.648,72 | 18.737,90     |
| 5                  | 21.089,28  | 2.351,38  | 18.737,90 | 0,00          |
| Σ                  | 105.446,40 | 30.446,40 | 75.000,00 |               |

Observe, agora, o comportamento de cada variável (PMT, J, PV e SD) com o gráfico teórico apresentado em 4.1.

Tendo estabelecido o valor da anuidade, PMT, é possível calcular o valor de cada variável (juros, capital e saldo devedor), individualmente. Acompanhe:

### Dos encargos - Juros:

Os encargos incidem sobre o saldo devedor existente em cada período. Logo, tendo o valor deste e, a taxa de juro, podemos calculá-lo.

Para n = 1

| $J_n = SD_{n-1} \cdot i'$               |  |
|-----------------------------------------|--|
| $J_1 = Sd_{1-1} (0,12548696)$           |  |
| $J_1 = Sd_0 (0,12548696)$               |  |
| J <sub>1</sub> = 75.000,00 (0,12548696) |  |
| J <sub>1</sub> = 9.411,52 u.m.          |  |

| Juros do período<br>"n" | SD        | i′         | $J_n = SD_{n-1} . i'$ |
|-------------------------|-----------|------------|-----------------------|
| $J_0$                   | -         | -          | -                     |
| J <sub>1</sub>          | 75.000,00 | 0,12548696 | 9.411,52              |
| J <sub>2</sub>          | 63.322,24 | 0,12548696 | 7.946,12              |
| $J_3$                   | 50.179,08 | 0,12548696 | 6.296,82              |
| J <sub>4</sub>          | 35.386,62 | 0,12548696 | 4.440,56              |
| $J_5$                   | 18.737,90 | 0,12548696 | 2.351,36              |

#### Do valor do capital – principal – amortizado

Corresponde ao valor da anuidade – PMT – deduzido dos encargos – juros - temos:

Para n = 1

| $PV_n = PMT_n - J_n$             |
|----------------------------------|
| $PV_1 = PMT_1 - J_1$             |
| $PV_1 = 21.089,28 - 9.411,52$    |
| PV <sub>1</sub> = 11.677,76 u.m. |

| Capital<br>amortizado<br>"n" | PMT       | J        | PV <sub>n</sub> = PMT <sub>n</sub> - J <sub>n</sub> |
|------------------------------|-----------|----------|-----------------------------------------------------|
| $PV_0$                       | -         | -        | -                                                   |
| $PV_1$                       | 21.089,28 | 9.411,52 | 11.677,76                                           |
| $PV_2$                       | 21.089,28 | 7.946,12 | 13.143,16                                           |
| $PV_3$                       | 21.089,28 | 6.296,82 | 14.792,46                                           |
| PV <sub>4</sub>              | 21.089,28 | 4.440,56 | 16.648,72                                           |
| $PV_5$                       | 21.089,28 | 2.351,38 | 18.737,90                                           |

#### Do valor do saldo devedor

O saldo devedor de determinado período é o resultado do saldo devedor do período anterior, menos o principal amortizado no período em referência.

Para n = 1

| $SD_n = SD_{n-1} - PV_n$                |  |
|-----------------------------------------|--|
| $SD_1 = SD_{1-1} - PV_1$                |  |
| $SD_1 = SD_0 - 11.677,76$               |  |
| SD <sub>1</sub> = 75.000,00 - 11.677,76 |  |
| SD <sub>1</sub> = 63.322,24 u.m.        |  |

| Saldo devedor<br>"n" | SD <sub>n-1</sub> | PV <sub>n</sub> | $SD_n = SD_{n-1} - PV_n$ |
|----------------------|-------------------|-----------------|--------------------------|
| $SD_0$               | -                 | -               | 75.000,00                |
| SD <sub>1</sub>      | 75.000,00         | 11.677,76       | 63.322,24                |
| SD <sub>2</sub>      | 63.322,24         | 13.143,16       | 50.179,08                |
| $SD_3$               | 50.179,08         | 14.792,46       | 35.386,62                |
| SD <sub>4</sub>      | 35.386,62         | 16.648,72       | 18.737,90                |
| SD <sub>5</sub>      | 18.737,90         | 18.737,90       | 0,00                     |

#### 4.4 Modelos para prática e fixação

**a)** Considere que uma operação financeira foi contratada nas seguintes condições: Valor de 150.000,00 u.m., prazo de amortização de um ano, amortizações a cada ¼ de ano, custo

financeiro de 4,060401% a.q., sem carência, anuidades postecipadas. Elabore a planilha de amortização com base no sistema francês de amortização - Price.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                | Ajuste                                            |
|--------------------------|---------------------------------------------------|
| Prazo: 1 ano             | Amortizações ¼ ano: trimestrais. (4 amortizações) |
| Encargos: 4,060401% a.q. | Encargos: 3,03010% a.t.                           |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar no modo postecipado):

| n | i       | PV           | FV   | PMT ?     |
|---|---------|--------------|------|-----------|
| 4 | 3,03010 | (150.000,00) | 0,00 | 40.383,11 |

Executando o cálculo, com a calculadora, passo a passo:

| Digitar    | Pressionar | Visualização |
|------------|------------|--------------|
| 4          | n          | 4,00         |
| 3,03010    | i          | 3,03         |
| 150.000,00 | CHS PV     | (150.000,00) |
| 0          | FV         | 0,00         |
|            | PMT        | 40.383,11    |

A planilha de amortização poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

Planilha X

| Drozo              | Anuidade   | luros     | Conital    | Saldo devedor |
|--------------------|------------|-----------|------------|---------------|
| Prazo              | Anuluaue   | Juros     | Capital    | Saluo devedoi |
| "n"                | "PMT"      | "J"       | "PV"       | "SD"          |
| TECLA A PRESSIONAR | Vide acima | 1 f AMORT | x < > y    | RCL PV        |
| 0                  | -          | -         | -          | 150.000,00    |
| 1                  | 40.383,11  | 4.545,15  | 35.837,96  | 114.162,04    |
| 2                  | 40.383,11  | 3.459,22  | 36.923,89  | 77.238,15     |
| 3                  | 40.383,11  | 2.340,39  | 38.042,72  | 39.195,43     |
| 4                  | 40.383,11  | 1.187,68  | 39.195,42  | -             |
| Σ                  | 161.532,44 | 11.532,44 | 150.000,00 |               |

b) Uma planta industrial do setor aeroespacial, em processo de ampliação, contratou junto ao fornecedor de um equipamento, um no valor total de 700.000,00 u.m. Parte do valor, correspondente a 35%, será "bancado" com recursos próprios. O restante necessitará de aporte de alguma instituição financeira. Entre as diversas ofertas, uma está muito próxima de ser concretizada. O banco "Alfa" oferece uma linha de crédito com prazo de amortização de 10 anos, com amortizações a cada 2,5 anos e, com custo anual de 4,5%. Elabore a planilha de amortização com base no sistema francês de amortização – Price.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                          | Ajuste                                                                        |
|------------------------------------|-------------------------------------------------------------------------------|
| Prazo: 10 anos                     | Amortizações a cada 2,5 anos: 30 meses = A cada 5 semestres. (4 amortizações) |
| Encargos: 4,5% a.a.                | Encargos: 11,632518% a cada período de 5 semestres.                           |
| Valor equipamento: 700.000,00 u.m. | Valor financiado: 700.000,00(0,65) = 455.000,00 u.m.                          |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar no modo postecipado):

| n | i         | PV           | FV   | PMT ?      |
|---|-----------|--------------|------|------------|
| 4 | 11,632518 | (455.000,00) | 0,00 | 148.643,85 |

Executando o cálculo, com a calculadora, passo a passo:

| Digitar    | Pressionar | Visualização |
|------------|------------|--------------|
| 4          | n          | 4,00         |
| 11,632518  | i          | 11,63        |
| 455.000,00 | CHS PV     | (455.000,00) |
| 0          | FV         | 0,00         |
|            | PMT        | 148.643,85   |

A planilha de amortização poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

|                    |            |            |            | Pianiina Xi   |
|--------------------|------------|------------|------------|---------------|
| Prazo              | Anuidade   | Juros      | Capital    | Saldo devedor |
| "n"                | ⊾"PMT"     | <b>"J"</b> | "PV"       | "SD"          |
| TECLA A PRESSIONAR | Vide acima | 1 f AMORT  | x < > y    | RCL PV        |
| 0                  | -          | -          | -          | 455.000,00    |
| 1                  | 148.643,85 | 52.927,96  | 95.715,89  | 359.284,11    |
| 2                  | 148.643,85 | 41.793,79  | 106.850,06 | 252.434,05    |
| 3                  | 148.643,85 | 29.364,44  | 119.279,41 | 133.154,64    |
| 4                  | 148.643,85 | 15.489,21  | 133.154,64 | 0,00          |
| Σ                  | 594.575,40 | 139.575,40 | 455.000,00 |               |

c) Elabore a planilha de amortização, utilizando o sistema francês de amortização – Price, para a seguinte situação: Valor: 1.000.000,00 u.m., Custo semestral de 6,152015%, prazo de amortização de 360 dias, amortizações a cada 1/3 de ano. Não há carência e as anuidades são postecipadas.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                | Ajuste                                                   |
|--------------------------|----------------------------------------------------------|
| Prazo: 360 dias = 1 ano  | Amortizações a cada 1/3 de ano: Quadrimestral = A cada 4 |
|                          | meses. (3 amortizações)                                  |
| Encargos: 6,152015% a.s. | Encargos: 4,060401% a.q.                                 |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar no modo postecipado):

| n | i        | PV             | FV   | PMT ?      |
|---|----------|----------------|------|------------|
| 3 | 4,060401 | (1.000.000,00) | 0,00 | 360.761,71 |

Executando o cálculo, com a calculadora, passo a passo:

1.082.285,13

| Digitar      | Pressionar | Visualização   |
|--------------|------------|----------------|
| 3            | n          | 3,00           |
| 4,060401     | i          | 4,06           |
| 1.000.000,00 | CHS PV     | (1.000.000,00) |
| 0            | FV         | 0,00           |
|              | PMT        | 360.761,71     |

A planilha de amortização poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

|                    |            |             |            | Planilha XII  |
|--------------------|------------|-------------|------------|---------------|
| Prazo              | Anuidade   | Juros       | Capital    | Saldo devedor |
| "n"                | ""PMT"     | <b>"</b> J" | "PV"       | "SD"          |
| TECLA A PRESSIONAR | Vide acima | 1 f AMORT   | x < > y    | RCL PV        |
| 0                  | -          | =           | -          | 1.000.000,00  |
| 1                  | 360.761,71 | 40.604,01   | 320.157,70 | 679.842,30    |
| 2                  | 360.761,71 | 27.604,32   | 333.157,39 | 346.684,91    |
| 3                  | 360.761,71 | 14.076,80   | 346.684,91 | 0,00          |

82.285,13

1.000.000,00

#### 4.5 Com carência

Transcrevemos, abaixo, o mesmo texto que consta em sistema de amortização constante – SAC, sobre carência.

Por vezes, há a previsão contratual de carência nos contratos de empréstimos e de financiamentos. Aqui, carência, é no sentido relativo ao capital. Entretanto, em situações muito particulares, também há a concessão de carência para os juros. Todavia, por estes representarem os ganhos do banqueiro, a sua concessão encontra resistências bem amplas por parte destes.

Carência deve ser compreendida como um lapso temporal em que não há a amortização de capital, apenas dos juros. Nos empreendimentos de longa maturação ou em fase de implantação não é rara tal situação. Sua concessão é parte da negociação geral das condições do empréstimo ou financiamento entre as partes.

Ainda, carência é um período de tempo maior do que o intervalo de tempo entre o pagamento das anuidades. Por exemplo: Em um contrato de cinco anos, o credor concede uma carência de dois anos e, após este prazo, as amortizações deverão ocorrer a cada período de ano. Logo, a carência, neste modelo, dois anos é maior que o intervalo de tempo entre cada uma das anuidades, ano.

Neste período de carência os encargos, os juros, são exigidos normalmente ficando apenas, o valor do principal, sem amortização.

O algoritmo de cálculo é semelhante ao apresentado anteriormente. Apenas, que o prazo do financiamento e de amortização é que devem ser ajustados para o cálculo da anuidade relativo à amortização de capital..

Para exemplificar, acompanhe o modelo a seguir:

Um empréstimo no valor de 75.000,00 u.m. deverá ser pago em 6 bimestres. Os encargos financeiros são de 3,03010% a.t. As amortizações, após a carência, deverão ser a cada 90 dias. A carência concedida foi de ¼ de ano. Elabore a planilha de amortização com base no sistema francês de amortização – Price.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                             | Ajustes                                      |
|---------------------------------------|----------------------------------------------|
| Prazo: 6 bimestres = 12 meses = 1 ano | Amortizações a cada 90 dias: 4 anuidades (1  |
|                                       | de carência + 3 para amortizar) trimestrais. |
| Carência: ¼ de ano                    | Carência = 1 trimestre                       |
| Encargos: trimestrais                 | Encargos = 3,03010% a.t.                     |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar no modo postecipado):

| n | i       | PV          | FV   | PMT ?     |
|---|---------|-------------|------|-----------|
| 3 | 3,03010 | (75.000,00) | 0,00 | 26.530,12 |

Executando o cálculo, com a calculadora, passo a passo:

| Digitar   | Pressionar | Visualização |
|-----------|------------|--------------|
| 3         | n          | 3,00         |
| 3,03010   | i          | 3,03         |
| 75.000,00 | CHS PV     | (75.000,00)  |
| 0         | FV         | 0,00         |
|           | PMT        | 26.530,12    |

Temos que nos lembrar que, aqui, estamos calculando apenas os valores da anuidade após a carência.

Para o período da carência, em que paga somente os encargos, estes serão demonstrados na planilha abaixo.

A planilha de amortização poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

Planilha XIII Saldo devedor **Prazo** Anuidade **Juros** Capital "J" "PV" "SD" "n" "PMT" **TECLA A PRESSIONAR** Vide acima **RCL PV** 1 f AMORT x < > y 75.000,00 2.272,58 2.272,58 0.00 75.000,00 1 2 26.530,12 2.272,58 24.257,54 50.742,46 3 26.530,12 1.537,55 24.992,57 25.749,89 4 26.530,12 780,23 25.749,89 0,00 Σ 81.862,94 6.862,94 75.000,00

#### 4.6 Modelos para prática e fixação

a) Um empreendedor individual efetuou uma operação financeira para liquidação em 60 meses. Ajustou com o credor uma carência, dentro do prazo do contrato de 12 trimestres, em que pagará somente os encargos devidos. Estes foram pactuados em 0,38% a.m. O valor contratado foi de 20.000,00 u.m. Após o período de carência, as amortizações serão anuais. Elabore a planilha de amortização com base no sistema francês de amortização – Price.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                          | Ajustes                                |
|------------------------------------|----------------------------------------|
| Prazo: 60 meses = 5 anos           | Amortizações anuais: 5 anuidades (3 de |
|                                    | carência + 2 para amortizar) anuais.   |
| Carência: 12 trimestres = 36 meses | Carência = 3 anos                      |
| Encargos: 0,38% a.m.               | Encargos = 4,656522% a.a.              |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar posicionada no modo postecipado):

| n | i        | PV          | FV   | PMT ?     |
|---|----------|-------------|------|-----------|
| 2 | 4,656522 | (20.000,00) | 0,00 | 10.703,78 |

Executando o cálculo, com a calculadora, passo a passo:

| Digitar   | Pressionar | Visualização |
|-----------|------------|--------------|
| 2         | n          | 2,00         |
| 4,656522  | i          | 4,66         |
| 20.000,00 | CHS PV     | (20.000,00)  |
| 0         | FV         | 0,00         |
|           | PMT        | 10.703,78    |

Temos que nos lembrar que, aqui, estamos calculando apenas os valores da anuidade após a carência.

Para o período da carência, em que paga somente os encargos, estes serão demonstrados na planilha abaixo.

A planilha de amortização poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

Planilha XIV

| Prazo              | Anuidade   | Juros      | Capital   | Saldo devedor |
|--------------------|------------|------------|-----------|---------------|
| "n"                | ""PMT"     | <b>"J"</b> | "PV"      | "SD"          |
| TECLA A PRESSIONAR | Vide acima | 1 f AMORT  | x < > y   | RCL PV        |
| 0                  | -          | =          | -         | 20.000,00     |
| 1                  | 931,30     | 931,30     | 0,00      | 20.000,00     |
| 2                  | 931,30     | 931,30     | 0,00      | 20.000,00     |
| 3                  | 931,30     | 931,30     | 0,00      | 20.000,00     |
| 4                  | 10.703,78  | 931,30     | 9.772,48  | 10.227,52     |
| 5                  | 10.703,78  | 476,26     | 10.227,52 | 0,00          |
| Σ                  | 24.201,46  | 4.201,46   | 20.000,00 |               |

b) Um agente financeiro ofertou a um cliente uma linha de financiamento para aquisição de implementos da linha automotiva. As condições gerais eram: Valor da linha de crédito de 500.000,00 u.m., prazo do recurso de 21 quadrimestres, amortizações anuais, com 6 semestres de carência. Custo da linha de crédito de 3,75% a.s. Apresente a planilha de amortização de capital com base no sistema francês de amortização – Price.

Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                        | Ajustes                                |  |
|----------------------------------|----------------------------------------|--|
| Prazo: 21 quadrimestres =7 anos  | Amortizações anuais: 7 anuidades (3 de |  |
|                                  | carência + 4 para amortizar) anuais.   |  |
| Carência: 6 semestres = 36 meses | Carência = 3 anos                      |  |
| Encargos: 3,75% a.s.             | Encargos = 7,640625% a.a.              |  |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar posicionada no modo postecipado):

| n | i        | PV           | FV   | PMT ?      |
|---|----------|--------------|------|------------|
| 4 | 7,640625 | (500.000,00) | 0,00 | 149.754,61 |

Executando o cálculo, com a calculadora, passo a passo:

| Digitar    | Pressionar | Visualização |
|------------|------------|--------------|
| 4          | n          | 4,00         |
| 7,640625   | i          | 7,64         |
| 500.000,00 | CHS PV     | (500.000,00) |
| 0          | FV         | 0,00         |
|            | PMT        | 149.754,61   |

Temos que nos lembrar que, aqui, estamos calculando apenas os valores da anuidade após a carência.

Para o período da carência, em que paga somente os encargos, estes serão demonstrados na planilha abaixo.

A planilha de amortização poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

|                    |            |            |            | Planilha XV   |
|--------------------|------------|------------|------------|---------------|
| Prazo              | Anuidade   | Juros      | Capital    | Saldo devedor |
| "n"                | ""PMT"     | "J"        | "PV"       | "SD"          |
| TECLA A PRESSIONAR | Vide acima | 1 f AMORT  | x < > y    | RCL PV        |
| 0                  | -          | -          | -          | 500.000,00    |
| 1                  | 38.203,13  | 38.203,13  | 0,00       | 500.000,00    |
| 2                  | 38.203,13  | 38.203,13  | 0,00       | 500.000,00    |
| 3                  | 38.203,13  | 38.203,13  | 0,00       | 500.000,00    |
| 4                  | 149.754,61 | 38.203,13  | 111.551,48 | 388.448,52    |
| 5                  | 149.754,61 | 29.679,89  | 120.074,72 | 268.373,80    |
| 6                  | 149.754,61 | 20.505,44  | 129.249,17 | 139.124,63    |
| 7                  | 149.754,61 | 10.629,98  | 139.124,63 | 0,00          |
| Σ                  | 713.627,83 | 213.627,83 | 500.000,00 |               |

c) Um empréstimo em conta-corrente foi concedido a um cliente por uma instituição financeira e, as condições gerais foram: Valor do ECC: 15.000,00 u.m., prazo de dois trimestres para liquidação, inclusos uma carência de um ¼ de ano. Após a carência, a amortização deverá ocorrer mensalmente. Os encargos ajustados foram de 2,01% a.b. Elabore a planilha de amortização considerando o sistema francês de amortização – Price. Elaborando a planilha de amortização do empréstimo. Antes, porém, cabem alguns ajustes:

| Enunciado                     | Ajustes                                 |
|-------------------------------|-----------------------------------------|
| Prazo: 2 trimestres = 6 meses | Amortizações mensais: 6 anuidades (3 de |
|                               | carência + 3 para amortizar) mensais.   |
| Carência: ¼ ano = 1 trimestre | Carência = 3 meses                      |
| Encargos: 2,01% a.b.          | Encargos = 1,00% a.m.                   |

Com a utilização da calculadora financeira HP 12C, o cálculo é dado por (a máquina deverá estar no modo postecipado):

| n | i    | PV          | FV   | PMT ?    |
|---|------|-------------|------|----------|
| 3 | 1,00 | (15.000,00) | 0,00 | 5.100,33 |

Executando o cálculo, com a calculadora, passo a passo:

| Digitar   | Pressionar | Visualização |
|-----------|------------|--------------|
| 3         | n          | 3,00         |
| 1         | i          | 1,00         |
| 15.000,00 | CHS PV     | (15.000,00)  |
| 0         | FV         | 0,00         |
|           | PMT        | 5.100,33     |

Temos que nos lembrar que, aqui, estamos calculando apenas os valores da anuidade após a carência.

Para o período da carência, em que paga somente os encargos, estes serão demonstrados na planilha abaixo.

A planilha de amortização poderá ser elaborada com o auxílio da calculadora financeira HP 12C.

| Prazo              | Anuidade   | Juros     | Capital   | Saldo devedor |  |
|--------------------|------------|-----------|-----------|---------------|--|
| "n"                | "n""PMT"   |           | "PV"      | "SD"          |  |
| TECLA A PRESSIONAR | Vide acima | 1 f AMORT | x < > y   | RCL PV        |  |
| 0                  | -          | -         | =         | 15.000,00     |  |
| 1                  | 150,00     | 150,00    | 0,00      | 15.000,00     |  |
| 2                  | 150,00     | 150,00    | 0,00      | 15.000,00     |  |
| 3                  | 150,00     | 150,00    | 0,00      | 15.000,00     |  |
| 4                  | 5.100,33   | 150,00    | 4.950,33  | 10.049,67     |  |
| 5                  | 5.100,33   | 100,50    | 4.999,83  | 5.049,84      |  |
| 6                  | 5.100,33   | 50,49     | 5.049,84  | 0,00          |  |
| Σ                  | 15.750,99  | 750,99    | 15.000,00 |               |  |

#### 4.7 Comparativo entre os sistemas SAC e PRICE

Interessante observar como se comportam as diversas variáveis – anuidade, capital, juros e saldo devedor - de cada um dos dois métodos de amortização de empréstimos. Isto nos auxiliará na tomada de decisão, quando da contratação de um empréstimo ou financiamento, por qual dos dois métodos optar, se disponível.

De imediato, tem-se que o sistema francês – price – é o utilizado pelo sistema financeiro e, também, pela indústria e pelo comércio, para as suas atividades. Daí, considerando-se haver inúmeros sistemas de amortização, qual a razão disto, essa quase unanimidade pelo referido sistema de amortização? Simples: Os ganhos – juros – auferidos neste sistema, nas mesmas condições de valor contratado, prazo, taxa de juros, carência, são maiores. E, banco, vive de juros. Logo, por ser este sistema o que mais lhes convém, é óbvia a sua escolha.

Isto não quer dizer que o tomador optando por um ou, por outro, terá ganhos ou prejuízos. O que tem que se considerar é o custo do dinheiro. Este, sim, é o que deverá balizar a decisão. Por vezes, somos levados a considerar o total de desembolsos efetuados ao longo do contrato como o ponto a ser considerado, o critério de escolha ou da análise a ser feita. O total de desembolsos, em quantidades de moedas, NADA tem a ver com o critério de escolha pelo qual sistema optar. O que deve ser considerado, o preponderante, é o custo efetivo do dinheiro. A taxa de juros.

Entretanto, o que tem que se entender, considerando a igualdade das condições de contratação, é que a opção por um, ou outro sistema, terá impacto no fluxo de caixa. Enquanto no sistema SAC começa-se tendo um desembolso total (anuidade) maior e, amortizando-se uma quota de capital maior, resultando em menor saldo devedor a cada período, sobre os quais incidem os encargos, o sistema PRICE tem um comportamento oposto. Começa com um desembolso total (anuidade) menor, logo, amortizando uma quota de capital menor, gerando um saldo devedor maior a amortizar, resultando, consequentemente, maiores ganhos – juros – ao credor.

Assim, ao se tomar a decisão de contratar um empréstimo ou financiamento, além das condições gerais da operação, tem-se que atentar para os reflexos no fluxo de caixa. Investimentos novos, com maiores necessidades de capital de giro no início de sua implantação, devem optar pelo PRICE (menor anuidade de desembolso, maior recurso no disponível da empresa). Projetos com capacidade de geração de caixa maiores no início devem optar pelo SAC.

No quadro abaixo, demonstra-se o comportamento de cada variável, nos dois sistemas de amortização expostos. Para tanto, antes, apresenta-se uma planilha de amortização, com as mesmas condições de contratação (prazo, valor, custo, número de anuidades) para validar o comportamento das curvas – variáveis.

As condições gerais do modelo são:

| Prazo  | Valor – u.m. | Custo % a.a. |  |  |  |
|--------|--------------|--------------|--|--|--|
| 3 anos | 100,00       | 10,00%       |  |  |  |

|       |                               | SA    | C      |         | PRICE    |        |         |        |         |  |  |
|-------|-------------------------------|-------|--------|---------|----------|--------|---------|--------|---------|--|--|
| Prazo | o Capital Juro Anuidade Saldo |       | Saldo  | Prazo   | Anuidade | Juro   | Capital | Saldo  |         |  |  |
|       | K                             | J     | PMT    | devedor |          | PMT    | J       | K      | devedor |  |  |
|       |                               |       |        | SD      |          |        |         |        | SD      |  |  |
| 0     | -                             | -     | -      | 100,00  | 0        | -      | -       | -      | 100,00  |  |  |
| 1     | 33,33                         | 10,00 | 43,33  | 66,67   | 1        | 40,21  | 10,00   | 30,21  | 69,79   |  |  |
| 2     | 33,33                         | 6,67  | 40,00  | 33,34   | 2        | 40,21  | 6,98    | 33,23  | 36,56   |  |  |
| 3     | 33,34                         | 3,33  | 36,67  | 0,00    | 3        | 40,21  | 3,65    | 36,56  | 0,00    |  |  |
| Σ     | 100,00                        | 20,00 | 120,00 |         | Σ        | 120,63 | 20,63   | 100,00 |         |  |  |

| Variável       | SAC         | PRICE       |
|----------------|-------------|-------------|
| Anuidade – PMT | Decrescente | Constante   |
| Juros – J      | Decrescente | Decrescente |
| Capital - K    | Constante   | Crescente   |
| Saldo devedor  | Decrescente | Decrescente |

Agora, com o quadro acima, fica fácil avaliar por qual método optar ao contratar uma operação de crédito.

Que nunca necessite. Porém necessitando, boa escolha. Para tanto, considere: Custo do dinheiro – taxa de juros – e o fluxo de caixa – desembolsos. Quantidade de moedas desembolsadas ao longo do contrato não é parâmetro de análise. Isto pode ser mais bem entendido em valor do dinheiro no tempo, objeto de outra obra.

**APÊNDICE** 

# TAXAS DE JUROS EQUIVALENTES MÊS PARA MESES

| . sêo | Taxa %    |           |           |           |           |            |            |            |            |            |
|-------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|
| MÊS   | a.m.      | 4.00      | 4.50      |           | 0.50      |            | 0.50       | 4.00       | 4.50       |            |
| N     | 0,50      | 1,00      | 1,50      | 2,00      | 2,50      | 3,00       | 3,50       | 4,00       | 4,50       | 5,00       |
| 1     | 0,500000  | 1,000000  | 1,500000  | 2,000000  | 2,500000  | 3,000000   | 3,500000   | 4,000000   | 4,500000   | 5,000000   |
| 2     | 1,002500  | 2,010000  | 3,022500  | 4,040000  | 5,062500  | 6,090000   | 7,122500   | 8,160000   | 9,202500   | 10,250000  |
| 3     | 1,507512  | 3,030100  | 4,567837  | 6,120800  | 7,689062  | 9,272700   | 10,871788  | 12,486400  | 14,116613  | 15,762500  |
| 4     | 2,015050  | 4,060401  | 6,136355  | 8,243216  | 10,381289 | 12,550881  | 14,752300  | 16,985856  | 19,251860  | 21,550625  |
| 5     | 2,525125  | 5,101005  | 7,728400  | 10,408080 | 13,140821 | 15,927407  | 18,768631  | 21,665290  | 24,618194  | 27,628156  |
| 6     | 3,037751  | 6,152015  | 9,344326  | 12,616242 | 15,969342 | 19,405230  | 22,925533  | 26,531902  | 30,226012  | 34,009564  |
| 7     | 3,552940  | 7,213535  | 10,984491 | 14,868567 | 18,868575 | 22,987387  | 27,227926  | 31,593178  | 36,086183  | 40,710042  |
| 8     | 4,070704  | 8,285671  | 12,649259 | 17,165938 | 21,840290 | 26,677008  | 31,680904  | 36,856905  | 42,210061  | 47,745544  |
| 9     | 4,591058  | 9,368527  | 14,338998 | 19,509257 | 24,886297 | 30,477318  | 36,289735  | 42,331181  | 48,609514  | 55,132822  |
| 10    | 5,114013  | 10,462213 | 16,054083 | 21,899442 | 28,008454 | 34,391638  | 41,059876  | 48,024428  | 55,296942  | 62,889463  |
| 11    | 5,639583  | 11,566835 | 17,794894 | 24,337431 | 31,208666 | 38,423387  | 45,996972  | 53,945406  | 62,285305  | 71,033936  |
| 12    | 6,167781  | 12,682503 | 19,561817 | 26,824179 | 34,488882 | 42,576089  | 51,106866  | 60,103222  | 69,588143  | 79,585633  |
| 13    | 6,698620  | 13,809328 | 21,355244 | 29,360663 | 37,851104 | 46,853371  | 56,395606  | 66,507351  | 77,219610  | 88,564914  |
| 14    | 7,232113  | 14,947421 | 23,175573 | 31,947876 | 41,297382 | 51,258972  | 61,869452  | 73,167645  | 85,194492  | 97,993160  |
| 15    | 7,768274  | 16,096896 | 25,023207 | 34,586834 | 44,829817 | 55,796742  | 67,534883  | 80,094351  | 93,528244  | 107,892818 |
| 16    | 8,307115  | 17,257864 | 26,898555 | 37,278571 | 48,450562 | 60,470644  | 73,398604  | 87,298125  | 102,237015 | 118,287459 |
| 17    | 8,848651  | 18,430443 | 28,802033 | 40,024142 | 52,161826 | 65,284763  | 79,467555  | 94,790050  | 111,337681 | 129,201832 |
| 18    | 9,392894  | 19,614748 | 30,734064 | 42,824625 | 55,965872 | 70,243306  | 85,748920  | 102,581652 | 120,847877 | 140,661923 |
| 19    | 9,939858  | 20,810895 | 32,695075 | 45,681117 | 59,865019 | 75,350605  | 92,250132  | 110,684918 | 130,786031 | 152,695020 |
| 20    | 10,489558 | 22,019004 | 34,685501 | 48,594740 | 63,861644 | 80,611123  | 98,978886  | 119,112314 | 141,171402 | 165,329771 |
| 21    | 11,042006 | 23,239194 | 36,705783 | 51,566634 | 67,958185 | 86,029457  | 105,943147 | 127,876807 | 152,024116 | 178,596259 |
| 22    | 11,597216 | 24,471586 | 38,756370 | 54,597967 | 72,157140 | 91,610341  | 113,151158 | 136,991879 | 163,365201 | 192,526072 |
| 23    | 12,155202 | 25,716302 | 40,837715 | 57,689926 | 76,461068 | 97,358651  | 120,611448 | 146,471554 | 175,216635 | 207,152376 |
| 24    | 12,715978 | 26,973465 | 42,950281 | 60,843725 | 80,872595 | 103,279411 | 128,332849 | 156,330416 | 187,601383 | 222,509994 |
|       |           |           |           |           |           |            |            |            |            |            |

| MÊS | Taxa % a.m. |            |            |            |            |            |            |            |            |            |
|-----|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| N   | 5,50        | 6,00       | 6,50       | 7,00       | 7,50       | 8,00       | 8,50       | 9,00       | 9,50       | 10,00      |
|     |             |            |            |            |            |            |            |            |            |            |
| 1   | 5,500000    | 6,000000   | 6,500000   | 7,000000   | 7,500000   | 8,000000   | 8,500000   | 9,000000   | 9,500000   | 10,000000  |
| 2   | 11,302500   | 12,360000  | 13,422500  | 14,490000  | 15,562500  | 16,640000  | 17,722500  | 18,810000  | 19,902500  | 21,000000  |
| 3   | 17,424138   | 19,101600  | 20,794963  | 22,504300  | 24,229688  | 25,971200  | 27,728913  | 29,502900  | 31,293238  | 33,100000  |
| 4   | 23,882465   | 26,247696  | 28,646635  | 31,079601  | 33,546914  | 36,048896  | 38,585870  | 41,158161  | 43,766095  | 46,410000  |
| 5   | 30,696001   | 33,822558  | 37,008666  | 40,255173  | 43,562933  | 46,932808  | 50,365669  | 53,862395  | 57,423874  | 61,051000  |
| 6   | 37,884281   | 41,851911  | 45,914230  | 50,073035  | 54,330153  | 58,687432  | 63,146751  | 67,710011  | 72,379142  | 77,156100  |
| 7   | 45,467916   | 50,363026  | 55,398655  | 60,578148  | 65,904914  | 71,382427  | 77,014225  | 82,803912  | 88,755161  | 94,871710  |
| 8   | 53,468651   | 59,384807  | 65,499567  | 71,818618  | 78,347783  | 85,093021  | 92,060434  | 99,256264  | 106,686901 | 114,358881 |
| 9   | 61,909427   | 68,947896  | 76,257039  | 83,845921  | 91,723866  | 99,900463  | 108,385571 | 117,189328 | 126,322156 | 135,794769 |
| 10  | 70,814446   | 79,084770  | 87,713747  | 96,715136  | 106,103156 | 115,892500 | 126,098344 | 136,736367 | 147,822761 | 159,374246 |
| 11  | 80,209240   | 89,829856  | 99,915140  | 110,485195 | 121,560893 | 133,163900 | 145,316703 | 158,042641 | 171,365924 | 185,311671 |
| 12  | 90,120749   | 101,219647 | 112,909624 | 125,219159 | 138,177960 | 151,817012 | 166,168623 | 181,266478 | 197,145686 | 213,842838 |
| 13  | 100,577390  | 113,292826 | 126,748750 | 140,984500 | 156,041307 | 171,962373 | 188,792956 | 206,580461 | 225,374527 | 245,227121 |
| 14  | 111,609146  | 126,090396 | 141,487418 | 157,853415 | 175,244405 | 193,719362 | 213,340357 | 234,172703 | 256,285107 | 279,749834 |
| 15  | 123,247649  | 139,655819 | 157,184101 | 175,903154 | 195,887735 | 217,216911 | 239,974288 | 264,248246 | 290,132192 | 317,724817 |
| 16  | 135,526270  | 154,035168 | 173,901067 | 195,216375 | 218,079315 | 242,594264 | 268,872102 | 297,030588 | 327,194750 | 359,497299 |
| 17  | 148,480215  | 169,277279 | 191,704637 | 215,881521 | 241,935264 | 270,001805 | 300,226231 | 332,763341 | 367,778251 | 405,447028 |
| 18  | 162,146627  | 185,433915 | 210,665438 | 237,993228 | 267,580409 | 299,601950 | 334,245461 | 371,712042 | 412,217185 | 455,991731 |
| 19  | 176,564691  | 202,559950 | 230,858691 | 261,652754 | 295,148940 | 331,570106 | 371,156325 | 414,166125 | 460,877818 | 511,590904 |
| 20  | 191,775749  | 220,713547 | 252,364506 | 286,968446 | 324,785110 | 366,095714 | 411,204612 | 460,441077 | 514,161210 | 572,749995 |
| 21  | 207,823415  | 239,956360 | 275,268199 | 314,056237 | 356,643993 | 403,383372 | 454,657005 | 510,880774 | 572,506525 | 640,024994 |
| 22  | 224,753703  | 260,353742 | 299,660632 | 343,040174 | 390,892293 | 443,654041 | 501,802850 | 565,860043 | 636,394645 | 714,027494 |
| 23  | 242,615157  | 281,974966 | 325,638573 | 374,052986 | 427,709215 | 487,146365 | 552,956092 | 625,787447 | 706,352137 | 795,430243 |
| 24  | 261,458990  | 304,893464 | 353,305081 | 407,236695 | 467,287406 | 534,118074 | 608,457360 | 691,108317 | 782,955590 | 884,973268 |
|     | -           | -          | -          | -          | -          | -          | -          | •          | •          | -          |

### MÊS PARA DIAS

| DIAS | Taxa %<br>a.m. |          |          |          |          |          |          |          |          |          |
|------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| N    | 0,50           | 1,00     | 1,50     | 2,00     | 2,50     | 3,00     | 3,50     | 4,00     | 4,50     | 5,00     |
|      |                |          |          |          |          |          |          |          |          |          |
| 1    | 0,016627       | 0,033173 | 0,049641 | 0,066031 | 0,082343 | 0,098578 | 0,114737 | 0,130821 | 0,146831 | 0,162766 |
| 2    | 0,033256       | 0,066358 | 0,099307 | 0,132105 | 0,164753 | 0,197253 | 0,229606 | 0,261814 | 0,293877 | 0,325797 |
| 3    | 0,049888       | 0,099553 | 0,148997 | 0,198222 | 0,247231 | 0,296025 | 0,344607 | 0,392977 | 0,441139 | 0,489094 |
| 4    | 0,066523       | 0,132759 | 0,198712 | 0,264384 | 0,329777 | 0,394895 | 0,459739 | 0,524313 | 0,588617 | 0,652656 |
| 5    | 0,083160       | 0,165976 | 0,248452 | 0,330589 | 0,412392 | 0,493862 | 0,575004 | 0,655820 | 0,736312 | 0,816485 |
| 6    | 0,099801       | 0,199205 | 0,298216 | 0,396838 | 0,495074 | 0,592927 | 0,690401 | 0,787499 | 0,884224 | 0,980580 |
| 7    | 0,116444       | 0,232444 | 0,348005 | 0,463130 | 0,577824 | 0,692089 | 0,805930 | 0,919350 | 1,032353 | 1,144942 |
| 8    | 0,133090       | 0,265694 | 0,397819 | 0,529467 | 0,660642 | 0,791349 | 0,921592 | 1,051374 | 1,180699 | 1,309572 |
| 9    | 0,149738       | 0,298956 | 0,447657 | 0,595847 | 0,743529 | 0,890707 | 1,037387 | 1,183571 | 1,329264 | 1,474470 |
| 10   | 0,166390       | 0,332228 | 0,497521 | 0,662271 | 0,826484 | 0,990163 | 1,153314 | 1,315940 | 1,478046 | 1,639636 |
| 11   | 0,183044       | 0,365512 | 0,547409 | 0,728739 | 0,909507 | 1,089717 | 1,269375 | 1,448483 | 1,627047 | 1,805071 |
| 12   | 0,199701       | 0,398806 | 0,597321 | 0,795251 | 0,992598 | 1,189370 | 1,385568 | 1,581199 | 1,776267 | 1,970775 |
| 13   | 0,216361       | 0,432112 | 0,647259 | 0,861806 | 1,075758 | 1,289120 | 1,501895 | 1,714089 | 1,925705 | 2,136749 |
| 14   | 0,233023       | 0,465429 | 0,697221 | 0,928406 | 1,158987 | 1,388969 | 1,618356 | 1,847153 | 2,075364 | 2,302993 |
| 15   | 0,249688       | 0,498756 | 0,747208 | 0,995049 | 1,242284 | 1,488916 | 1,734950 | 1,980390 | 2,225242 | 2,469508 |
| 16   | 0,266356       | 0,532095 | 0,797220 | 1,061737 | 1,325649 | 1,588961 | 1,851678 | 2,113802 | 2,375339 | 2,636293 |
| 17   | 0,283027       | 0,565445 | 0,847257 | 1,128469 | 1,409083 | 1,689106 | 1,968539 | 2,247389 | 2,525658 | 2,803351 |
| 18   | 0,299701       | 0,598806 | 0,897319 | 1,195244 | 1,492586 | 1,789349 | 2,085535 | 2,381150 | 2,676197 | 2,970680 |
| 19   | 0,316377       | 0,632177 | 0,947405 | 1,262064 | 1,576158 | 1,889690 | 2,202665 | 2,515086 | 2,826957 | 3,138281 |
| 20   | 0,333056       | 0,665560 | 0,997517 | 1,328928 | 1,659798 | 1,990131 | 2,319930 | 2,649198 | 2,977939 | 3,306155 |
| 21   | 0,349738       | 0,698955 | 1,047653 | 1,395836 | 1,743508 | 2,090671 | 2,437329 | 2,783485 | 3,129142 | 3,474303 |
| 22   | 0,366423       | 0,732360 | 1,097814 | 1,462788 | 1,827286 | 2,191310 | 2,554862 | 2,917947 | 3,280567 | 3,642724 |
| 23   | 0,383110       | 0,765776 | 1,148000 | 1,529785 | 1,911133 | 2,292048 | 2,672531 | 3,052586 | 3,432214 | 3,811419 |
| 24   | 0,399800       | 0,799203 | 1,198211 | 1,596825 | 1,995049 | 2,392885 | 2,790335 | 3,187400 | 3,584085 | 3,980389 |
| 25   | 0,416493       | 0,832642 | 1,248447 | 1,663910 | 2,079035 | 2,493822 | 2,908273 | 3,322391 | 3,736178 | 4,149634 |
| 26   | 0,433189       | 0,866091 | 1,298707 | 1,731039 | 2,163089 | 2,594858 | 3,026347 | 3,457559 | 3,888494 | 4,319155 |
| 27   | 0,449888       | 0,899552 | 1,348993 | 1,798213 | 2,247213 | 2,695994 | 3,144557 | 3,592903 | 4,041034 | 4,488951 |
| 28   | 0,466589       | 0,933023 | 1,399304 | 1,865431 | 2,331406 | 2,797229 | 3,262902 | 3,728425 | 4,193799 | 4,659024 |
| 29   | 0,483293       | 0,966506 | 1,449639 | 1,932693 | 2,415668 | 2,898565 | 3,381383 | 3,864124 | 4,346787 | 4,829373 |
| 30   | 0,500000       | 1,000000 | 1,500000 | 2,000000 | 2,500000 | 3,000000 | 3,500000 | 4,000000 | 4,500000 | 5,000000 |
| 31   | 0,516710       | 1,033505 | 1,550386 | 2,067351 | 2,584401 | 3,101535 | 3,618753 | 4,136054 | 4,653438 | 5,170905 |
| J 1  | 3,310710       | 1,033303 | 1,550500 | 2,007331 | 2,307701 | 3,101333 | 3,010733 | 4,130034 | 4,000400 | 3,170703 |

| DIAC | Таха %   |          |             |          |          |          |          |          |          |           |
|------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|-----------|
| DIAS | a.m.     | 4.00     | <i>4</i> E0 | 7.00     | 7 50     | 0.00     | 0.50     | 0.00     | 0.50     | 10.00     |
| N    | 5,50     | 6,00     | 6,50        | 7,00     | 7,50     | 8,00     | 8,50     | 9,00     | 9,50     | 10,00     |
| 1    | 0,178629 | 0,194418 | 0,210136    | 0,225783 | 0,241360 | 0,256866 | 0,272303 | 0,287672 | 0,302973 | 0,318206  |
| 2    | 0,357576 | 0,389215 | 0,420715    | 0,452076 | 0,483302 | 0,514392 | 0,545348 | 0,576171 | 0,606863 | 0,637424  |
| 3    | 0,536844 | 0,584390 | 0,631735    | 0,678881 | 0,725828 | 0,772580 | 0,819137 | 0,865501 | 0,911674 | 0,957658  |
| 4    | 0,716431 | 0,779945 | 0,843199    | 0,906197 | 0,968940 | 1,031430 | 1,093670 | 1,155663 | 1,217409 | 1,278911  |
| 5    | 0,896339 | 0,975879 | 1,055107    | 1,134026 | 1,212638 | 1,290946 | 1,368952 | 1,446659 | 1,524070 | 1,601187  |
| 6    | 1,076569 | 1,172195 | 1,267461    | 1,362370 | 1,456924 | 1,551128 | 1,644983 | 1,738493 | 1,831660 | 1,924488  |
| 7    | 1,257121 | 1,368893 | 1,480261    | 1,591229 | 1,701801 | 1,811978 | 1,921766 | 2,031166 | 2,140182 | 2,248817  |
| 8    | 1,437995 | 1,565972 | 1,693508    | 1,820605 | 1,947268 | 2,073499 | 2,199302 | 2,324681 | 2,449639 | 2,574179  |
| 9    | 1,619192 | 1,763435 | 1,907203    | 2,050499 | 2,193327 | 2,335691 | 2,477594 | 2,619040 | 2,760033 | 2,900576  |
| 10   | 1,800713 | 1,961282 | 2,121347    | 2,280912 | 2,439981 | 2,598557 | 2,756644 | 2,914247 | 3,071368 | 3,228012  |
| 11   | 1,982558 | 2,159514 | 2,335942    | 2,511845 | 2,687230 | 2,862098 | 3,036454 | 3,210302 | 3,383646 | 3,556489  |
| 12   | 2,164728 | 2,358131 | 2,550987    | 2,743300 | 2,935075 | 3,126316 | 3,317026 | 3,507209 | 3,696870 | 3,886012  |
| 13   | 2,347224 | 2,557134 | 2,766484    | 2,975277 | 3,183519 | 3,391212 | 3,598361 | 3,804970 | 4,011043 | 4,216583  |
| 14   | 2,530045 | 2,756524 | 2,982434    | 3,207778 | 3,432562 | 3,656789 | 3,880463 | 4,103588 | 4,326168 | 4,548206  |
| 15   | 2,713193 | 2,956301 | 3,198837    | 3,440804 | 3,682207 | 3,923048 | 4,163333 | 4,403065 | 4,642248 | 4,880885  |
| 16   | 2,896668 | 3,156467 | 3,415696    | 3,674356 | 3,932454 | 4,189992 | 4,446974 | 4,703403 | 4,959285 | 5,214622  |
| 17   | 3,080471 | 3,357023 | 3,633010    | 3,908436 | 4,183305 | 4,457620 | 4,731386 | 5,004606 | 5,277283 | 5,549421  |
| 18   | 3,264602 | 3,557968 | 3,850780    | 4,143044 | 4,434761 | 4,725937 | 5,016573 | 5,306675 | 5,596244 | 5,885285  |
| 19   | 3,449062 | 3,759304 | 4,069009    | 4,378181 | 4,686825 | 4,994942 | 5,302537 | 5,609612 | 5,916172 | 6,222218  |
| 20   | 3,633852 | 3,961031 | 4,287696    | 4,613850 | 4,939497 | 5,264639 | 5,589279 | 5,913422 | 6,237069 | 6,560224  |
| 21   | 3,818971 | 4,163150 | 4,506842    | 4,850051 | 5,192778 | 5,535028 | 5,876802 | 6,218105 | 6,558938 | 6,899304  |
| 22   | 4,004422 | 4,365663 | 4,726449    | 5,086785 | 5,446671 | 5,806112 | 6,165109 | 6,523665 | 6,881782 | 7,239464  |
| 23   | 4,190203 | 4,568569 | 4,946518    | 5,324053 | 5,701177 | 6,077892 | 6,454200 | 6,830103 | 7,205605 | 7,580706  |
| 24   | 4,376317 | 4,771869 | 5,167049    | 5,561857 | 5,956297 | 6,350370 | 6,744078 | 7,137424 | 7,530408 | 7,923035  |
| 25   | 4,562763 | 4,975565 | 5,388043    | 5,800198 | 6,212033 | 6,623548 | 7,034746 | 7,445628 | 7,856196 | 8,266452  |
| 26   | 4,749542 | 5,179657 | 5,609502    | 6,039077 | 6,468386 | 6,897428 | 7,326205 | 7,754719 | 8,182971 | 8,610962  |
| 27   | 4,936654 | 5,384146 | 5,831426    | 6,278496 | 6,725357 | 7,172011 | 7,618458 | 8,064699 | 8,510736 | 8,956568  |
| 28   | 5,124101 | 5,589032 | 6,053816    | 6,518455 | 6,982949 | 7,447300 | 7,911507 | 8,375571 | 8,839493 | 9,303275  |
| 29   | 5,311883 | 5,794316 | 6,276674    | 6,758956 | 7,241163 | 7,723295 | 8,205353 | 8,687337 | 9,169247 | 9,651084  |
| 30   | 5,500000 | 6,000000 | 6,500000    | 7,000000 | 7,500000 | 8,000000 | 8,500000 | 9,000000 | 9,500000 | 10,000000 |
| 31   | 5,688453 | 6,206084 | 6,723795    | 7,241588 | 7,759462 | 8,277415 | 8,795449 | 9,313562 | 9,831755 | 10,350026 |

## MÊS PARA BIMESTRE

| BIMES<br>TRE      | Taxa %<br>a.m.         |             |             |           |             |              |             |                      |             |                |
|-------------------|------------------------|-------------|-------------|-----------|-------------|--------------|-------------|----------------------|-------------|----------------|
| N                 | 0,50                   | 1,00        | 1,50        | 2,00      | 2,50        | 3,00         | 3,50        | 4,00                 | 4,50        | 5,00           |
| 1                 | 1,002500               | 2,010000    | 3,022500    | 4,040000  | 5,062500    | 6,090000     | 7,122500    | 8,160000             | 9,202500    | 10,250000      |
| 2                 | 2,015050               | 4,060401    | 6,136355    | 8,243216  | 10,381289   | 12,550881    | 14,752300   | 16,985856            | 19,251860   | 21,550625      |
| 3                 | 3,037751               | 6,152015    | 9,344326 1  | 2,616242  | 15,969342   | 19,405230    | 22,925533   | 26,531902            | 30,226012   | 34,009564      |
| 4                 | 4,070704               | 8,285671    | 12,649259 1 | 7,165938  | 21,840290   | 26,677008    | 31,680904   | 36,856905            | 42,210061   | 47,745544      |
| 5                 | 5,114013               | 10,462213   | 16,054083 2 | 1,899442  | 28,008454   | 34,391638    | 41,059876   | 48,024428            | 55,296942   | 62,889463      |
| 6                 | 6,167781               | 12,682503   | 19,561817 2 | 6,824179  | 34,488882   | 42,576089    | 51,106866   | 60,103222            | 69,588143   | 79,585633      |
| 7                 | 7,232113               | 14,947421   | 23,175573 3 | 1,947876  | 41,297382   | 51,258972    | 61,869452   | 73,167645            | 85,194492   | 97,993160      |
| 8                 | 8,307115               | 17,257864   | 26,898555 3 | 7,278571  | 48,450562   | 60,470644    | 73,398604   | 87,298125            | 102,237015  | 118,287459     |
| 9                 | 9,392894               | 19,614748   | 30,734064 4 | 2,824625  | 55,965872   | 70,243306    | 85,748920   | 102,581652           | 120,847877  | 140,661923     |
| 10                | 10,489558              | 22,019004   | 34,685501 4 | 8,594740  | 63,861644   | 80,611123    | 98,978886   | 119,112314           | 141,171402  | 165,329771     |
| 11                | 11,597216              | 24,471586   | 38,756370 5 | 4,597967  | 72,157140   | 91,610341    | 113,151158  | 136,991879           | 163,365201  | 192,526072     |
| 12                | 12,715978              | 26,973465   | 42,950281 6 | 0,843725  | 80,872595   | 103,279411   | 128,332849  | 156,330416           | 187,601383  | 222,509994     |
| BIMES<br>TRE<br>N | Taxa %<br>a.m.<br>5,50 | 6,00        | 6,50        | 7,00      | 7,50        | 8,00         | 8,50        | 9,00                 | 9,50        | 10,00          |
| 1                 | 11,30250               | 0 12,360000 | 13,422500   | 14,4900   | 000 15,562  | 500 16,64000 | 00 17,7225  | 00 18,8100           | 00 19,9025  | 00 21,000000   |
| 2                 | 23,88246               | 5 26,247696 | 28,646635   | 31,0796   | 601 33,546° | 914 36,04889 | 96 38,5858  | 70 41,1581           | 61 43,7660  | 95 46,410000   |
| 3                 | 37,88428               | 1 41,851911 | 45,914230   | 50,0730   | 35 54,330   | 153 58,68743 | 32 63,1467  | 51 67,7100           | 11 72,3791  | 42 77,156100   |
| 4                 | 53,46865               | 1 59,384807 | 65,499567   | 71,8186   | 518 78,347  | 783 85,09302 | 21 92,0604  | 34 99,2562           | 64 106,686  | 901 114,358881 |
| 5                 | 70,81444               | 6 79,084770 | 87,713747   | 96,715    | 136 106,103 | 156 115,8925 | 00 126,0983 | 344 136,736          | 367 147,822 | 761 159,374246 |
| 6                 | 90,12074               | 9 101,21964 | 7 112,90962 | 4 125,219 | 159 138,177 | 960 151,8170 | 12 166,1686 | 523 181,266 <i>4</i> | 478 197,145 | 686 213,842838 |
| 7                 | 111,60914              | 6 126,09039 | 6 141,48741 | 8 157,853 | 415 175,244 | 405 193,7193 | 62 213,3403 | 357 234,172          | 703 256,285 | 107 279,749834 |
| 8                 | 135,52627              | 0 154,03516 | 8 173,90106 | 7 195,216 | 375 218,079 | 315 242,5942 | 64 268,8721 | 102 297,030          | 588 327,194 | 750 359,497299 |
| 9                 | 162,14662              | 7 185,43391 | 5 210,66543 | 8 237,993 | 228 267,580 | 409 299,6019 | 50 334,2454 | 161 371,7120         | 042 412,217 | 185 455,991731 |
| 10                | 191,77574              | 9 220,71354 | 7 252,36450 | 6 286,968 | 446 324,785 | 110 366,0957 | 14 411,2046 | 612 460,4410         | 077 514,161 | 210 572,749995 |
| 11                | 224,75370              | 3 260,35374 | 2 299,66063 | 2 343,040 | 174 390,892 | 293 443,6540 | 41 501,8028 | 350 565,8600         | 043 636,394 | 645 714,027494 |
| 12                | 261,45899              | 0 304,89346 | 4 353,30508 | 1 407,236 | 695 467,287 | 406 534,1180 | 74 608,4573 | 860 691,108          | 317 782,955 | 590 884,973268 |

### MÊS PARA TRIMESTRE

| TRIMESTRE<br>N | Taxa %<br>a.m.<br>0,50 | 1,00       | 1,50       | 2,00       | 2,50       | 3,00       | 3,50       | 4,00       | 4,50       | 5,00       |
|----------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1              | 1,507512               | 3,030100   | 4,567837   | 6,120800   | 7,689062   | 9,272700   | 10,871788  | 12,486400  | 14,116613  | 15,762500  |
| 2              | 3,037751               | 6,152015   | 9,344326   | 12,616242  | 15,969342  | 19,405230  | 22,925533  | 26,531902  | 30,226012  | 34,009564  |
| 3              | 4,591058               | 9,368527   | 14,338998  | 19,509257  | 24,886297  | 30,477318  | 36,289735  | 42,331181  | 48,609514  | 55,132822  |
| 4              | 6,167781               | 12,682503  | 19,561817  | 26,824179  | 34,488882  | 42,576089  | 51,106866  | 60,103222  | 69,588143  | 79,585633  |
| 5              | 7,768274               | 16,096896  | 25,023207  | 34,586834  | 44,829817  | 55,796742  | 67,534883  | 80,094351  | 93,528244  | 107,892818 |
| 6              | 9,392894               | 19,614748  | 30,734064  | 42,824625  | 55,965872  | 70,243306  | 85,748920  | 102,581652 | 120,847877 | 140,661923 |
| 7              | 11,042006              | 23,239194  | 36,705783  | 51,566634  | 67,958185  | 86,029457  | 105,943147 | 127,876807 | 152,024116 | 178,596259 |
| 8              | 12,715978              | 26,973465  | 42,950281  | 60,843725  | 80,872595  | 103,279411 | 128,332849 | 156,330416 | 187,601383 | 222,509994 |
| TRIMESTRE<br>N | Taxa %<br>a.m.<br>5,50 | 6,00       | 6,50       | 7,00       | 7,50       | 8,00       | 8,50       | 9,00       | 9,50       | 10,00      |
| 1              | 17,424138              | 19,101600  | 20,794963  | 22,504300  | 24,229688  | 25,971200  | 27,728913  | 29,502900  | 31,293238  | 33,100000  |
| 2              | 37,884281              | 41,851911  | 45,914230  | 50,073035  | 54,330153  | 58,687432  | 63,146751  | 67,710011  | 72,379142  | 77,156100  |
| 3              | 61,909427              | 68,947896  | 76,257039  | 83,845921  | 91,723866  | 99,900463  | 108,385571 | 117,189328 | 126,322156 | 135,794769 |
| 4              | 90,120749              | 101,219647 | 112,909624 | 125,219159 | 138,177960 | 151,817012 | 166,168623 | 181,266478 | 197,145686 | 213,842838 |
| 5              | 123,247649             | 139,655819 | 157,184101 | 175,903154 | 195,887735 | 217,216911 | 239,974288 | 264,248246 | 290,132192 | 317,724817 |
| 6              | 162,146627             | 185,433915 | 210,665438 | 237,993228 | 267,580409 | 299,601950 | 334,245461 | 371,712042 | 412,217185 | 455,991731 |
| 7              | 207,823415             | 239,956360 | 275,268199 | 314,056237 | 356,643993 | 403,383372 | 454,657005 | 510,880774 | 572,506525 | 640,024994 |
| 8              | 261,458990             | 304,893464 | 353,305081 | 407,236695 | 467,287406 | 534,118074 | 608,457360 | 691,108317 | 782,955590 | 884,973268 |

### MÊS PARA QUADRIMESTRE

| QUADRIMESTRE | Taxa %<br>a.m. |            |            |            |            |            |            |            |            |            |
|--------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| N            | 0,50           | 1,00       | 1,50       | 2,00       | 2,50       | 3,00       | 3,50       | 4,00       | 4,50       | 5,00       |
| 4            | 0.045050       | 4.0/0404   | / 40/055   | 0.042047   | 10 201200  | 40 550004  | 44.750000  | 4/ 00505/  | 10.0510/0  | 04 550/05  |
| 1            | 2,015050       | 4,060401   | 6,136355   | 8,243216   | 10,381289  | 12,550881  | 14,752300  | 16,985856  | 19,251860  | 21,550625  |
| 2            | 4,070704       | 8,285671   | 12,649259  | 17,165938  | 21,840290  | 26,677008  | 31,680904  | 36,856905  | 42,210061  | 47,745544  |
| 3            | 6,167781       | 12,682503  | 19,561817  | 26,824179  | 34,488882  | 42,576089  | 51,106866  | 60,103222  | 69,588143  | 79,585633  |
| 4            | 8,307115       | 17,257864  | 26,898555  | 37,278571  | 48,450562  | 60,470644  | 73,398604  | 87,298125  | 102,237015 | 118,287459 |
| 5            | 10,489558      | 22,019004  | 34,685501  | 48,594740  | 63,861644  | 80,611123  | 98,978886  | 119,112314 | 141,171402 | 165,329771 |
| 6            | 12,715978      | 26,973465  | 42,950281  | 60,843725  | 80,872595  | 103,279411 | 128,332849 | 156,330416 | 187,601383 | 222,509994 |
| QUADRIMESTRE | Taxa %<br>a.m. |            |            |            |            |            |            |            |            |            |
| N            | 5,50           | 6,00       | 6,50       | 7,00       | 7,50       | 8,00       | 8,50       | 9,00       | 9,50       | 10,00      |
| 1            | 23,882465      | 26,247696  | 28,646635  | 31,079601  | 33,546914  | 36,048896  | 38,585870  | 41,158161  | 43,766095  | 46,410000  |
| 2            | 53,468651      | 59,384807  | 65,499567  | 71,818618  | 78,347783  | 85,093021  | 92,060434  | 99,256264  | 106,686901 | 114,358881 |
| 3            | 90,120749      | 101,219647 | 112,909624 | 125,219159 | 138,177960 | 151,817012 | 166,168623 | 181,266478 | 197,145686 | 213,842838 |
| 4            | 135,526270     | 154,035168 | 173,901067 | 195,216375 | 218,079315 | 242,594264 | 268,872102 | 297,030588 | 327,194750 | 359,497299 |
| 5            | 191,775749     | 220,713547 | 252,364506 | 286,968446 | 324,785110 | 366,095714 | 411,204612 | 460,441077 | 514,161210 | 572,749995 |
| 7            | 207,823415     | 239,956360 | 275,268199 | 314,056237 | 356,643993 | 403,383372 | 454,657005 | 510,880774 | 572,506525 | 640,024994 |
| 8            |                |            |            |            |            |            |            |            |            |            |

### MÊS PARA SEMESTRE

| SEMESTRE<br>N | Taxa %<br>a.m.<br>0,50 | 1,00       | 1,50       | 2,00       | 2,50       | 3,00       | 3,50       | 4,00       | 4,50       | 5,00       |
|---------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1             | 3,037751               | 6,152015   | 9,344326   | 12,616242  | 15,969342  | 19,405230  | 22,925533  | 26,531902  | 30,226012  | 34,009564  |
| 2             | 6,167781               | 12,682503  | 19,561817  | 26,824179  | 34,488882  | 42,576089  | 51,106866  | 60,103222  | 69,588143  | 79,585633  |
| 3             | 9,392894               | 19,614748  | 30,734064  | 42,824625  | 55,965872  | 70,243306  | 85,748920  | 102,581652 | 120,847877 | 140,661923 |
| 4             | 12,715978              | 26,973465  | 42,950281  | 60,843725  | 80,872595  | 103,279411 | 128,332849 | 156,330416 | 187,601383 | 222,509994 |
| SEMESTRE<br>N | Taxa %<br>a.m.<br>5,50 | 6,00       | 6,50       | 7,00       | 7,50       | 8,00       | 8,50       | 9,00       | 9,50       | 10,00      |
| 1             | 37,884281              | 41,851911  | 45,914230  | 50,073035  | 54,330153  | 58,687432  | 63,146751  | 67,710011  | 72,379142  | 77,156100  |
| 2             | 90,120749              | 101,219647 | 112,909624 | 125,219159 | 138,177960 | 151,817012 | 166,168623 | 181,266478 | 197,145686 | 213,842838 |
| 3             | 162,146627             | 185,433915 | 210,665438 | 237,993228 | 267,580409 | 299,601950 | 334,245461 | 371,712042 | 412,217185 | 455,991731 |
| 4             | 261,458990             | 304,893464 | 353,305081 | 407,236695 | 467,287406 | 534,118074 | 608,457360 | 691,108317 | 782,955590 | 884,973268 |

### MÊS PARA ANO

| ANO<br>N | Таха %<br>a.m.<br>0,50 | 1,00       | 1,50       | 2,00       | 2,50       | 3,00       | 3,50       | 4,00       | 4,50       | 5,00       |
|----------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1        | 6,167781               | 12,682503  | 19,561817  | 26,824179  | 34,488882  | 42,576089  | 51,106866  | 60,103222  | 69,588143  | 79,585633  |
| 2        | 12,715978              | 26,973465  | 42,950281  | 60,843725  | 80,872595  | 103,279411 | 128,332849 | 156,330416 | 187,601383 | 222,509994 |
| ANO<br>N | Таха %<br>а.m.<br>5,50 | 6,00       | 6,50       | 7,00       | 7,50       | 8,00       | 8,50       | 9,00       | 9,50       | 10,00      |
| 1        | 90,120749              | 101,219647 | 112,909624 | 125,219159 | 138,177960 | 151,817012 | 166,168623 | 181,266478 | 197,145686 | 213,842838 |
| 2        | 261,458990             | 304,893464 | 353,305081 | 407,236695 | 467,287406 | 534,118074 | 608,457360 | 691,108317 | 782,955590 | 884,973268 |

### **BIMESTRE PARA:**

|              | Taxa %<br>a.b. |           |           |           |           |           |           |           |           |           |
|--------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N            | 0,50           | 1,00      | 1,50      | 2,00      | 2,50      | 3,00      | 3,50      | 4,00      | 4,50      | 5,00      |
| MÊS          | 0,249688       | 0,498756  | 0,747208  | 0,995049  | 1,242284  | 1,488916  | 1,734950  | 1,980390  | 2,225242  | 2,469508  |
| TRIMESTRE    | 0,750937       | 1,503744  | 2,258417  | 3,014950  | 3,773341  | 4,533583  | 5,295673  | 6,059606  | 6,825377  | 7,592983  |
| QUADRIMESTRE | 1,002500       | 2,010000  | 3,022500  | 4,040000  | 5,062500  | 6,090000  | 7,122500  | 8,160000  | 9,202500  | 10,250000 |
| SEMESTRE     | 1,507512       | 3,030100  | 4,567837  | 6,120800  | 7,689062  | 9,272700  | 10,871788 | 12,486400 | 14,116613 | 15,762500 |
| ANO          | 3,037751       | 6,152015  | 9,344326  | 12,616242 | 15,969342 | 19,405230 | 22,925533 | 26,531902 | 30,226012 | 34,009564 |
|              | Taxa %<br>a.b. |           |           |           |           |           |           |           |           |           |
| N            | 5,50           | 6,00      | 6,50      | 7,00      | 7,50      | 8,00      | 8,50      | 9,00      | 9,50      | 10,00     |
|              |                |           |           |           |           |           |           |           |           |           |
| MÊS          | 2,713193       | 2,956301  | 3,198837  | 3,440804  | 3,682207  | 3,923048  | 4,163333  | 4,403065  | 4,642248  | 4,880885  |
| TRIMESTRE    | 8,362419       | 9,133679  | 9,906762  | 10,681661 | 11,458372 | 12,236892 | 13,017217 | 13,799341 | 14,583261 | 15,368973 |
| QUADRIMESTRE | 11,302500      | 12,360000 | 13,422500 | 14,490000 | 15,562500 | 16,640000 | 17,722500 | 18,810000 | 19,902500 | 21,000000 |
| SEMESTRE     | 17,424138      | 19,101600 | 20,794963 | 22,504300 | 24,229688 | 25,971200 | 27,728913 | 29,502900 | 31,293238 | 33,100000 |
| ANO          | 37,884281      | 41,851911 | 45,914230 | 50,073035 | 54,330153 | 58,687432 | 63,146751 | 67,710011 | 72,379142 | 77,156100 |

## TRIMESTRE PARA

|              | Таха %<br>a.t. |           |           |           |           |           |           |           |           |           |
|--------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N            | 0,50           | 1,00      | 1,50      | 2,00      | 2,50      | 3,00      | 3,50      | 4,00      | 4,50      | 5,00      |
| MÊS          | 0,166390       | 0,332228  | 0,497521  | 0,662271  | 0,826484  | 0,990163  | 1,153314  | 1,315940  | 1,478046  | 1,639636  |
| BIMESTRE     | 0,333056       | 0,665560  | 0,997517  | 1,328928  | 1,659798  | 1,990131  | 2,319930  | 2,649198  | 2,977939  | 3,306155  |
| QUADRIMESTRE | 0,667222       | 1,335551  | 2,004983  | 2,675516  | 3,347146  | 4,019868  | 4,693680  | 5,368578  | 6,044558  | 6,721617  |
| SEMESTRE     | 1,002500       | 2,010000  | 3,022500  | 4,040000  | 5,062500  | 6,090000  | 7,122500  | 8,160000  | 9,202500  | 10,250000 |
| ANO          | 2,015050       | 4,060401  | 6,136355  | 8,243216  | 10,381289 | 12,550881 | 14,752300 | 16,985856 | 19,251860 | 21,550625 |
|              | Taxa %<br>a.t. |           |           |           |           |           |           |           |           |           |
| N            | 5,50           | 6,00      | 6,50      | 7,00      | 7,50      | 8,00      | 8,50      | 9,00      | 9,50      | 10,00     |
|              |                |           |           |           |           |           |           |           |           |           |
| MÊS          | 1,800713       | 1,961282  | 2,121347  | 2,280912  | 2,439981  | 2,598557  | 2,756644  | 2,914247  | 3,071368  | 3,228012  |
| BIMESTRE     | 3,633852       | 3,961031  | 4,287696  | 4,613850  | 4,939497  | 5,264639  | 5,589279  | 5,913422  | 6,237069  | 6,560224  |
| QUADRIMESTRE | 7,399752       | 8,078959  | 8,759235  | 9,440576  | 10,122979 | 10,806441 | 11,490959 | 12,176529 | 12,863148 | 13,550813 |
| SEMESTRE     | 11,302500      | 12,360000 | 13,422500 | 14,490000 | 15,562500 | 16,640000 | 17,722500 | 18,810000 | 19,902500 | 21,000000 |
| ANO          | 23,882465      | 26,247696 | 28,646635 | 31,079601 | 33,546914 | 36,048896 | 38,585870 | 41,158161 | 43,766095 | 46,410000 |

### **QUADRIMESTRE PARA**

|           | Taxa % a.q. |           |           |           |           |           |           |           |           |           |
|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N         | 0,50        | 1,00      | 1,50      | 2,00      | 2,50      | 3,00      | 3,50      | 4,00      | 4,50      | 5,00      |
|           |             |           |           |           |           |           |           |           |           |           |
| MÊS       | 0,124766    | 0,249068  | 0,372909  | 0,496293  | 0,619225  | 0,741707  | 0,863745  | 0,985341  | 1,106499  | 1,227223  |
| BIMESTRE  | 0,249688    | 0,498756  | 0,747208  | 0,995049  | 1,242284  | 1,488916  | 1,734950  | 1,980390  | 2,225242  | 2,469508  |
| TRIMESTRE | 0,374766    | 0,749066  | 1,122904  | 1,496281  | 1,869201  | 2,241666  | 2,613680  | 2,985245  | 3,356363  | 3,727037  |
| SEMESTRE  | 0,750937    | 1,503744  | 2,258417  | 3,014950  | 3,773341  | 4,533583  | 5,295673  | 6,059606  | 6,825377  | 7,592983  |
| ANO       | 1,507512    | 3,030100  | 4,567837  | 6,120800  | 7,689062  | 9,272700  | 10,871788 | 12,486400 | 14,116613 | 15,762500 |
|           |             |           |           |           |           |           |           |           |           |           |
|           | Taxa % a.g. |           |           |           |           |           |           |           |           |           |
|           | •           |           |           |           |           |           |           |           |           |           |
| N         | 5,50        | 6,00      | 6,50      | 7,00      | 7,50      | 8,00      | 8,50      | 9,00      | 9,50      | 10,00     |
| MÊS       | 1,347517    | 1,467385  | 1,586828  | 1,705853  | 1,824460  | 1,942655  | 2,060440  | 2,177818  | 2,294793  | 2,411369  |
| BIMESTRE  | 2,713193    | 2,956301  | 3,198837  | 3,440804  | 3,682207  | 3,923048  | 4,163333  | 4,403065  | 4,642248  | 4,880885  |
| TRIMESTRE | 4,097271    | 4,467066  | 4,836426  | 5,205352  | 5,573847  | 5,941914  | 6,309556  | 6,676774  | 7,043571  | 7,409950  |
| SEMESTRE  | 8,362419    | 9,133679  | 9,906762  | 10,681661 | 11,458372 | 12,236892 | 13,017217 | 13,799341 | 14,583261 | 15,368973 |
| ANO       | 17,424138   | 19,101600 | 20,794963 | 22,504300 | 24,229688 | 25,971200 | 27,728913 | 29,502900 | 31,293238 | 33,100000 |

### **SEMESTRE PARA**

|              | Taxa % a.s. |           |           |           |           |           |           |           |           |           |
|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N            | 0,50        | 1,00      | 1,50      | 2,00      | 2,50      | 3,00      | 3,50      | 4,00      | 4,50      | 5,00      |
| MÊS          | 0,083160    | 0,165976  | 0,248452  | 0,330589  | 0,412392  | 0,493862  | 0,575004  | 0,655820  | 0,736312  | 0,816485  |
| BIMESTRE     | 1,507512    | 3,030100  | 4,567837  | 6,120800  | 7,689062  | 9,272700  | 10,871788 | 12,486400 | 14,116613 | 15,762500 |
| TRIMESTRE    | 1,002500    | 2,010000  | 3,022500  | 4,040000  | 5,062500  | 6,090000  | 7,122500  | 8,160000  | 9,202500  | 10,250000 |
| QUADRIMESTRE | 0,333056    | 0,665560  | 0,997517  | 1,328928  | 1,659798  | 1,990131  | 2,319930  | 2,649198  | 2,977939  | 3,306155  |
| ANO          | 1,002500    | 2,010000  | 3,022500  | 4,040000  | 5,062500  | 6,090000  | 7,122500  | 8,160000  | 9,202500  | 10,250000 |
|              |             |           |           |           |           |           |           |           |           |           |
|              | Taxa % a.s. |           |           |           |           |           |           |           |           |           |
| N            | 5,50        | 6,00      | 6,50      | 7,00      | 7,50      | 8,00      | 8,50      | 9,00      | 9,50      | 10,00     |
| MÊS          | 0,896339    | 0,975879  | 1,055107  | 1,134026  | 1,212638  | 1,290946  | 1,368952  | 1,446659  | 1,524070  | 1,601187  |
| BIMESTRE     | 17,424138   | 19,101600 | 20,794963 | 22,504300 | 24,229688 | 25,971200 | 27,728913 | 29,502900 | 31,293238 | 33,100000 |
| TRIMESTRE    | 11,302500   | 12,360000 | 13,422500 | 14,490000 | 15,562500 | 16,640000 | 17,722500 | 18,810000 | 19,902500 | 21,000000 |
| QUADRIMESTRE | 3,633852    | 3,961031  | 4,287696  | 4,613850  | 4,939497  | 5,264639  | 5,589279  | 5,913422  | 6,237069  | 6,560224  |
| ANO          | 11,302500   | 12,360000 | 13,422500 | 14,490000 | 15,562500 | 16,640000 | 17,722500 | 18,810000 | 19,902500 | 21,000000 |

### **ANO PARA**

|              | Таха % а.а. |          |          |          |          |          |          |          |          |          |
|--------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| N            | 0,50        | 1,00     | 1,50     | 2,00     | 2,50     | 3,00     | 3,50     | 4,00     | 4,50     | 5,00     |
|              |             |          |          |          |          |          |          |          |          |          |
| MÊS          | 0,041571    | 0,082954 | 0,124149 | 0,165158 | 0,205984 | 0,246627 | 0,287090 | 0,327374 | 0,367481 | 0,407412 |
| BIMESTRE     | 0,083160    | 0,165976 | 0,248452 | 0,330589 | 0,412392 | 0,493862 | 0,575004 | 0,655820 | 0,736312 | 0,816485 |
| TRIMESTRE    | 0,124766    | 0,249068 | 0,372909 | 0,496293 | 0,619225 | 0,741707 | 0,863745 | 0,985341 | 1,106499 | 1,227223 |
| QUADRIMESTRE | 0,166390    | 0,332228 | 0,497521 | 0,662271 | 0,826484 | 0,990163 | 1,153314 | 1,315940 | 1,478046 | 1,639636 |
| SEMESTRE     | 0,249688    | 0,498756 | 0,747208 | 0,995049 | 1,242284 | 1,488916 | 1,734950 | 1,980390 | 2,225242 | 2,469508 |
|              |             |          |          |          |          |          |          |          |          |          |
|              | Taxa % a.a. |          |          |          |          |          |          |          |          |          |
| N            | 5,50        | 6,00     | 6,50     | 7,00     | 7,50     | 8,00     | 8,50     | 9,00     | 9,50     | 10,00    |
| MÊS          | 0,447170    | 0,486755 | 0,526169 | 0,565415 | 0,604492 | 0,643403 | 0,682149 | 0,720732 | 0,759153 | 0,797414 |
| BIMESTRE     | 0,896339    | 0,975879 | 1,055107 | 1,134026 | 1,212638 | 1,290946 | 1,368952 | 1,446659 | 1,524070 | 1,601187 |
| TRIMESTRE    | 1,347517    | 1,467385 | 1,586828 | 1,705853 | 1,824460 | 1,942655 | 2,060440 | 2,177818 | 2,294793 | 2,411369 |
| QUADRIMESTRE | 1,800713    | 1,961282 | 2,121347 | 2,280912 | 2,439981 | 2,598557 | 2,756644 | 2,914247 | 3,071368 | 3,228012 |
| SEMESTRE     | 2,713193    | 2,956301 | 3,198837 | 3,440804 | 3,682207 | 3,923048 | 4,163333 | 4,403065 | 4,642248 | 4,880885 |